无穷区间上的非线性分数型Rayleigh-Stokes问题

IF 2.5 2区 数学 Q1 MATHEMATICS
Jing Na Wang
{"title":"无穷区间上的非线性分数型Rayleigh-Stokes问题","authors":"Jing Na Wang","doi":"10.1007/s13540-025-00408-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the existence of mild solutions of the nonlinear fractional Rayleigh-Stokes problem for a generalized second grade fluid on an infinite interval. We firstly show the boundedness and continuity of solution operator. And then, by using a generalized Arzelà-Ascoli theorem and some new techniques, we get the compactness on the infinite interval. Moreover, we prove the existence of global mild solutions of nonlinear fractional Rayleigh-Stokes problem.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"34 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The nonlinear fractional Rayleigh-Stokes problem on an infinite interval\",\"authors\":\"Jing Na Wang\",\"doi\":\"10.1007/s13540-025-00408-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the existence of mild solutions of the nonlinear fractional Rayleigh-Stokes problem for a generalized second grade fluid on an infinite interval. We firstly show the boundedness and continuity of solution operator. And then, by using a generalized Arzelà-Ascoli theorem and some new techniques, we get the compactness on the infinite interval. Moreover, we prove the existence of global mild solutions of nonlinear fractional Rayleigh-Stokes problem.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-025-00408-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00408-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类广义二阶流体在无限区间上的非线性分数型Rayleigh-Stokes问题温和解的存在性。首先证明了解算子的有界性和连续性。然后,利用Arzelà-Ascoli广义定理和一些新技术,得到了无限区间上的紧性。此外,我们还证明了非线性分数阶Rayleigh-Stokes问题整体温和解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The nonlinear fractional Rayleigh-Stokes problem on an infinite interval

In this paper, we investigate the existence of mild solutions of the nonlinear fractional Rayleigh-Stokes problem for a generalized second grade fluid on an infinite interval. We firstly show the boundedness and continuity of solution operator. And then, by using a generalized Arzelà-Ascoli theorem and some new techniques, we get the compactness on the infinite interval. Moreover, we prove the existence of global mild solutions of nonlinear fractional Rayleigh-Stokes problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信