通过常规血液检查预测多发性骨髓瘤的进展事件

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Maximilian Ferle, Nora Grieb, Markus Kreuz, Jonas Ader, Hartmut Goldschmidt, Elias K. Mai, Uta Bertsch, Uwe Platzbecker, Thomas Neumuth, Kristin Reiche, Alexander Oeser, Maximilian Merz
{"title":"通过常规血液检查预测多发性骨髓瘤的进展事件","authors":"Maximilian Ferle, Nora Grieb, Markus Kreuz, Jonas Ader, Hartmut Goldschmidt, Elias K. Mai, Uta Bertsch, Uwe Platzbecker, Thomas Neumuth, Kristin Reiche, Alexander Oeser, Maximilian Merz","doi":"10.1038/s41746-025-01636-9","DOIUrl":null,"url":null,"abstract":"<p>This study introduces a system for predicting disease progression events in multiple myeloma patients from the CoMMpass study (<i>N</i> = 1186). Utilizing a hybrid neural network architecture, our model predicts future blood work from historical lab results with high accuracy, significantly outperforming baseline estimators for key disease parameters. Disease progression events are annotated in the forecasted data, predicting these events with significant reliability. We externally validated our model using the GMMG-MM5 study dataset (<i>N</i> = 504), and could reproduce the main results of our study. Our approach enables early detection and personalized monitoring of patients at risk of impeding progression. Designed modularly, our system enhances interpretability, facilitates integration of additional modules, and uses routine blood work measurements to ensure accessibility in clinical settings. With this, we contribute to the development of a scalable, cost-effective virtual human twin system for optimized healthcare resource utilization and improved outcomes in multiple myeloma patient care.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"19 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting progression events in multiple myeloma from routine blood work\",\"authors\":\"Maximilian Ferle, Nora Grieb, Markus Kreuz, Jonas Ader, Hartmut Goldschmidt, Elias K. Mai, Uta Bertsch, Uwe Platzbecker, Thomas Neumuth, Kristin Reiche, Alexander Oeser, Maximilian Merz\",\"doi\":\"10.1038/s41746-025-01636-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study introduces a system for predicting disease progression events in multiple myeloma patients from the CoMMpass study (<i>N</i> = 1186). Utilizing a hybrid neural network architecture, our model predicts future blood work from historical lab results with high accuracy, significantly outperforming baseline estimators for key disease parameters. Disease progression events are annotated in the forecasted data, predicting these events with significant reliability. We externally validated our model using the GMMG-MM5 study dataset (<i>N</i> = 504), and could reproduce the main results of our study. Our approach enables early detection and personalized monitoring of patients at risk of impeding progression. Designed modularly, our system enhances interpretability, facilitates integration of additional modules, and uses routine blood work measurements to ensure accessibility in clinical settings. With this, we contribute to the development of a scalable, cost-effective virtual human twin system for optimized healthcare resource utilization and improved outcomes in multiple myeloma patient care.</p>\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41746-025-01636-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01636-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了compass研究(N = 1186)中预测多发性骨髓瘤患者疾病进展事件的系统。利用混合神经网络架构,我们的模型以高精度预测历史实验室结果的未来血液工作,显着优于关键疾病参数的基线估计器。疾病进展事件在预测数据中有注释,预测这些事件具有显著的可靠性。我们使用GMMG-MM5研究数据集(N = 504)外部验证了我们的模型,并可以重现我们研究的主要结果。我们的方法能够早期发现和个性化监测有阻碍进展风险的患者。模块化设计,我们的系统增强了可解释性,促进了附加模块的集成,并使用常规血液工作测量来确保临床环境的可访问性。有了这个,我们有助于开发一个可扩展的,具有成本效益的虚拟人类双胞胎系统,以优化医疗资源利用和改善多发性骨髓瘤患者护理的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting progression events in multiple myeloma from routine blood work

Predicting progression events in multiple myeloma from routine blood work

This study introduces a system for predicting disease progression events in multiple myeloma patients from the CoMMpass study (N = 1186). Utilizing a hybrid neural network architecture, our model predicts future blood work from historical lab results with high accuracy, significantly outperforming baseline estimators for key disease parameters. Disease progression events are annotated in the forecasted data, predicting these events with significant reliability. We externally validated our model using the GMMG-MM5 study dataset (N = 504), and could reproduce the main results of our study. Our approach enables early detection and personalized monitoring of patients at risk of impeding progression. Designed modularly, our system enhances interpretability, facilitates integration of additional modules, and uses routine blood work measurements to ensure accessibility in clinical settings. With this, we contribute to the development of a scalable, cost-effective virtual human twin system for optimized healthcare resource utilization and improved outcomes in multiple myeloma patient care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信