橡胶树纤维/核桃壳颗粒增强环氧复合材料的物理力学和磨损特性试验分析

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
B. Pratap, V. K. Patel
{"title":"橡胶树纤维/核桃壳颗粒增强环氧复合材料的物理力学和磨损特性试验分析","authors":"B. Pratap,&nbsp;V. K. Patel","doi":"10.1002/mawe.202400198","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the investigation of natural fibres as viable replacements for engineered fibres has gained significant prominence. Natural fibres come with remarkable environmental attributes, including biodegradability and renewability. This work aims to analyze the physical, mechanical, and wear behavior of grewia optiva-walnut filler-based epoxy composites. The walnut shell content varies from 0 wt.–%–12 wt.–%, whereas grewia optiva fibre is kept constant (i. e., 10 wt.–%) for all fabricated compositions. The results revealed that the 9 wt.–% of walnut content-based composites exhibited a higher value of tensile strength (123.9 MPa) and flexural strength (52.03 MPa), whereas higher hardness, which is 38.33 HV 5, was achieved for the 12 wt.–% of walnut content. Moreover, the influence of selected control variables, i. e., walnut content, sliding velocity, normal load, and sliding distance, on the specific wear rate (SWR) of the composites was ranked using the Taguchi analysis. Further, scanning electron microscope (SEM) analysis has also been performed for fractured surfaces.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"56 4","pages":"612-624"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental analysis of physico-mechanical and wear characteristics of grewia optiva fibre/walnut shell particles reinforced epoxy hybrid composites\",\"authors\":\"B. Pratap,&nbsp;V. K. Patel\",\"doi\":\"10.1002/mawe.202400198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, the investigation of natural fibres as viable replacements for engineered fibres has gained significant prominence. Natural fibres come with remarkable environmental attributes, including biodegradability and renewability. This work aims to analyze the physical, mechanical, and wear behavior of grewia optiva-walnut filler-based epoxy composites. The walnut shell content varies from 0 wt.–%–12 wt.–%, whereas grewia optiva fibre is kept constant (i. e., 10 wt.–%) for all fabricated compositions. The results revealed that the 9 wt.–% of walnut content-based composites exhibited a higher value of tensile strength (123.9 MPa) and flexural strength (52.03 MPa), whereas higher hardness, which is 38.33 HV 5, was achieved for the 12 wt.–% of walnut content. Moreover, the influence of selected control variables, i. e., walnut content, sliding velocity, normal load, and sliding distance, on the specific wear rate (SWR) of the composites was ranked using the Taguchi analysis. Further, scanning electron microscope (SEM) analysis has also been performed for fractured surfaces.</p>\",\"PeriodicalId\":18366,\"journal\":{\"name\":\"Materialwissenschaft und Werkstofftechnik\",\"volume\":\"56 4\",\"pages\":\"612-624\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialwissenschaft und Werkstofftechnik\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202400198\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202400198","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,天然纤维作为工程纤维可行替代品的研究取得了显著进展。天然纤维具有显著的环保特性,包括可生物降解性和可再生性。本研究旨在分析橡胶树-胡桃木填料基环氧复合材料的物理、力学和磨损性能。核桃壳的含量从0 wt. - % - 12 wt. - %不等,而青花纤维则保持不变。(10 wt. - %)。结果表明,核桃含量为9 wt. - %的复合材料具有较高的抗拉强度(123.9 MPa)和抗折强度(52.03 MPa),而核桃含量为12 wt. - %的复合材料具有较高的硬度(38.33 HV 5)。此外,所选择的控制变量,即。采用田口分析法对复合材料的比磨损率(SWR)进行了排序。此外,还对断裂表面进行了扫描电子显微镜(SEM)分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental analysis of physico-mechanical and wear characteristics of grewia optiva fibre/walnut shell particles reinforced epoxy hybrid composites

In recent years, the investigation of natural fibres as viable replacements for engineered fibres has gained significant prominence. Natural fibres come with remarkable environmental attributes, including biodegradability and renewability. This work aims to analyze the physical, mechanical, and wear behavior of grewia optiva-walnut filler-based epoxy composites. The walnut shell content varies from 0 wt.–%–12 wt.–%, whereas grewia optiva fibre is kept constant (i. e., 10 wt.–%) for all fabricated compositions. The results revealed that the 9 wt.–% of walnut content-based composites exhibited a higher value of tensile strength (123.9 MPa) and flexural strength (52.03 MPa), whereas higher hardness, which is 38.33 HV 5, was achieved for the 12 wt.–% of walnut content. Moreover, the influence of selected control variables, i. e., walnut content, sliding velocity, normal load, and sliding distance, on the specific wear rate (SWR) of the composites was ranked using the Taguchi analysis. Further, scanning electron microscope (SEM) analysis has also been performed for fractured surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materialwissenschaft und Werkstofftechnik
Materialwissenschaft und Werkstofftechnik 工程技术-材料科学:综合
CiteScore
2.10
自引率
9.10%
发文量
154
审稿时长
4-8 weeks
期刊介绍: Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing. Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline. Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信