用回收的高密度聚乙烯和稻壳制备生物丝

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
M. N. Andanje, J. W. Mwangi, B. R. Mose, S. Carrara
{"title":"用回收的高密度聚乙烯和稻壳制备生物丝","authors":"M. N. Andanje,&nbsp;J. W. Mwangi,&nbsp;B. R. Mose,&nbsp;S. Carrara","doi":"10.1002/mawe.202400168","DOIUrl":null,"url":null,"abstract":"<p>The benefits of green technology have industrial use of composites reinforced with biofibers garner attention. They are replacing conventional plastics due to their capability to solve environmental issues. Despite this shift in material development, the synthesis of biodegradable biocomposites still poses a challenge due to their wide range of properties. This work focuses on developing biofilaments for fused filament fabrication from recycled high-density polyethylene and rice husk waste in varying proportions to study the effect of their different ratios on the biofilaments. High-density polyethylene though very popular, has not been widely explored in fused filament fabrication due to warping challenges and high thermal shrinkage of printed parts upon solidification. The addition of organic fillers has been proposed as a way to reduce these challenges. Rice husk waste has been used as a filler in polyethylene for conventional processes such as extrusion, injection molding, and pressing but not widely in additive manufacturing. In this study, a particle size of less than 75 μm and the use of a compatibilizer improved its miscibility in the polymer's matrix. The highest composition of the biofilament achieved was 35 % rice husks, 35 % recycled high-density polyethylene, and 30 % compatibilizer, an improvement of the rice husk filler from previous studies. Printability was attained up to a biofilament composition of 40 % recycled high-density polyethylene, 30 % rice husks, and 30 % compatibilizer. The maximum tensile strength, tensile modulus, and maximum tensile strain of this biofilament were 8.53 MPa (standard deviation of 1.32 MPa), 6.6 % (standard deviation of 0.03 %), and 128.56 MPa (standard deviation of 13 MPa), respectively. Though the addition of rice husk filler reduced the tensile strength, there was an improvement in the crystallinity of the biofilament which improved the shrinkage and warpage of the printed part. This work thus demonstrated an improvement in the rice husk content as a filler in biofilaments made from recycled high-density polyethylene with enhanced biodegradability.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"56 4","pages":"581-600"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biofilaments from recycled high-density polyethylene and rice husks for fused filament fabrication\",\"authors\":\"M. N. Andanje,&nbsp;J. W. Mwangi,&nbsp;B. R. Mose,&nbsp;S. Carrara\",\"doi\":\"10.1002/mawe.202400168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The benefits of green technology have industrial use of composites reinforced with biofibers garner attention. They are replacing conventional plastics due to their capability to solve environmental issues. Despite this shift in material development, the synthesis of biodegradable biocomposites still poses a challenge due to their wide range of properties. This work focuses on developing biofilaments for fused filament fabrication from recycled high-density polyethylene and rice husk waste in varying proportions to study the effect of their different ratios on the biofilaments. High-density polyethylene though very popular, has not been widely explored in fused filament fabrication due to warping challenges and high thermal shrinkage of printed parts upon solidification. The addition of organic fillers has been proposed as a way to reduce these challenges. Rice husk waste has been used as a filler in polyethylene for conventional processes such as extrusion, injection molding, and pressing but not widely in additive manufacturing. In this study, a particle size of less than 75 μm and the use of a compatibilizer improved its miscibility in the polymer's matrix. The highest composition of the biofilament achieved was 35 % rice husks, 35 % recycled high-density polyethylene, and 30 % compatibilizer, an improvement of the rice husk filler from previous studies. Printability was attained up to a biofilament composition of 40 % recycled high-density polyethylene, 30 % rice husks, and 30 % compatibilizer. The maximum tensile strength, tensile modulus, and maximum tensile strain of this biofilament were 8.53 MPa (standard deviation of 1.32 MPa), 6.6 % (standard deviation of 0.03 %), and 128.56 MPa (standard deviation of 13 MPa), respectively. Though the addition of rice husk filler reduced the tensile strength, there was an improvement in the crystallinity of the biofilament which improved the shrinkage and warpage of the printed part. This work thus demonstrated an improvement in the rice husk content as a filler in biofilaments made from recycled high-density polyethylene with enhanced biodegradability.</p>\",\"PeriodicalId\":18366,\"journal\":{\"name\":\"Materialwissenschaft und Werkstofftechnik\",\"volume\":\"56 4\",\"pages\":\"581-600\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialwissenschaft und Werkstofftechnik\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202400168\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202400168","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

绿色技术的好处使生物纤维增强复合材料的工业应用受到重视。由于它们解决环境问题的能力,它们正在取代传统塑料。尽管材料发展发生了这种转变,但由于生物可降解生物复合材料的广泛性质,其合成仍然面临挑战。本研究以再生高密度聚乙烯和稻壳废料为原料,以不同比例制备融合丝用生物丝,研究不同比例对生物丝的影响。高密度聚乙烯虽然很受欢迎,但由于翘曲的挑战和打印件在凝固时的高热收缩率,在熔融长丝制造中尚未得到广泛的探索。添加有机填料已被提议作为减少这些挑战的一种方法。稻壳废料已被用作聚乙烯的填料,用于常规工艺,如挤压、注射成型和压制,但在增材制造中应用并不广泛。在这项研究中,粒径小于75 μm并使用相容剂改善了其在聚合物基体中的混溶性。该生物丝的最高组成为35%的稻壳,35%的再生高密度聚乙烯和30%的增容剂,这是先前研究中稻壳填料的改进。印刷性达到了生物丝组成的40%再生高密度聚乙烯,30%稻壳,和30%的增容剂。该生物丝的最大拉伸强度、拉伸模量和最大拉伸应变分别为8.53 MPa(标准差为1.32 MPa)、6.6%(标准差为0.03%)和128.56 MPa(标准差为13 MPa)。稻壳填料的加入虽然降低了生物丝的抗拉强度,但提高了生物丝的结晶度,改善了打印件的收缩和翘曲。因此,这项工作证明了稻壳含量作为生物丝填料的改善,该生物丝由再生高密度聚乙烯制成,具有增强的生物降解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biofilaments from recycled high-density polyethylene and rice husks for fused filament fabrication

The benefits of green technology have industrial use of composites reinforced with biofibers garner attention. They are replacing conventional plastics due to their capability to solve environmental issues. Despite this shift in material development, the synthesis of biodegradable biocomposites still poses a challenge due to their wide range of properties. This work focuses on developing biofilaments for fused filament fabrication from recycled high-density polyethylene and rice husk waste in varying proportions to study the effect of their different ratios on the biofilaments. High-density polyethylene though very popular, has not been widely explored in fused filament fabrication due to warping challenges and high thermal shrinkage of printed parts upon solidification. The addition of organic fillers has been proposed as a way to reduce these challenges. Rice husk waste has been used as a filler in polyethylene for conventional processes such as extrusion, injection molding, and pressing but not widely in additive manufacturing. In this study, a particle size of less than 75 μm and the use of a compatibilizer improved its miscibility in the polymer's matrix. The highest composition of the biofilament achieved was 35 % rice husks, 35 % recycled high-density polyethylene, and 30 % compatibilizer, an improvement of the rice husk filler from previous studies. Printability was attained up to a biofilament composition of 40 % recycled high-density polyethylene, 30 % rice husks, and 30 % compatibilizer. The maximum tensile strength, tensile modulus, and maximum tensile strain of this biofilament were 8.53 MPa (standard deviation of 1.32 MPa), 6.6 % (standard deviation of 0.03 %), and 128.56 MPa (standard deviation of 13 MPa), respectively. Though the addition of rice husk filler reduced the tensile strength, there was an improvement in the crystallinity of the biofilament which improved the shrinkage and warpage of the printed part. This work thus demonstrated an improvement in the rice husk content as a filler in biofilaments made from recycled high-density polyethylene with enhanced biodegradability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materialwissenschaft und Werkstofftechnik
Materialwissenschaft und Werkstofftechnik 工程技术-材料科学:综合
CiteScore
2.10
自引率
9.10%
发文量
154
审稿时长
4-8 weeks
期刊介绍: Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing. Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline. Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信