采用中心复合设计改善处理过的混合再生骨料混凝土的力学性能

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. Basnett, A. Sekar, Nachiar S
{"title":"采用中心复合设计改善处理过的混合再生骨料混凝土的力学性能","authors":"A. Basnett,&nbsp;A. Sekar,&nbsp;Nachiar S","doi":"10.1002/mawe.202400202","DOIUrl":null,"url":null,"abstract":"<p>The rapid expansion of global infrastructure growth has caused a substantial rise in construction and demolition waste. This study introduces an innovative approach for investigating mixed recycled aggregate in concrete generated from construction and demolition waste by treating it with cement and nano-silica slurry wrapping techniques. A central composite design experimental methodology was used to optimise the slurry for treatment, considering cement content, nano-silica content, and water-to-aggregate ratio as independent variables. At the same time, water absorption and Los Angeles abrasion with visual inspection were response-targeted values. Multi-objective response optimisation and desirability analysis determined optimal levels. Scanning electron microscopy, x-ray diffraction, and x-ray fluorescence were used to analyse mixed recycled aggregate facade changes after treatment. In addition, concrete with untreated and optimised treated mixed recycled aggregate at 0 %, 25 %, 50 %, 75 %, and 100 % as a replacement for natural aggregate was tested for workability and mechanical properties. The findings showed that 50 % replacement improved concrete characteristics at the optimal percentage due to the coating process-filled fracture holes and densified mixed recycled material, improving concrete matrix bonding.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"56 4","pages":"517-536"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ameliorating mechanical properties of treated mixed recycled aggregate concrete using a central composite design\",\"authors\":\"A. Basnett,&nbsp;A. Sekar,&nbsp;Nachiar S\",\"doi\":\"10.1002/mawe.202400202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rapid expansion of global infrastructure growth has caused a substantial rise in construction and demolition waste. This study introduces an innovative approach for investigating mixed recycled aggregate in concrete generated from construction and demolition waste by treating it with cement and nano-silica slurry wrapping techniques. A central composite design experimental methodology was used to optimise the slurry for treatment, considering cement content, nano-silica content, and water-to-aggregate ratio as independent variables. At the same time, water absorption and Los Angeles abrasion with visual inspection were response-targeted values. Multi-objective response optimisation and desirability analysis determined optimal levels. Scanning electron microscopy, x-ray diffraction, and x-ray fluorescence were used to analyse mixed recycled aggregate facade changes after treatment. In addition, concrete with untreated and optimised treated mixed recycled aggregate at 0 %, 25 %, 50 %, 75 %, and 100 % as a replacement for natural aggregate was tested for workability and mechanical properties. The findings showed that 50 % replacement improved concrete characteristics at the optimal percentage due to the coating process-filled fracture holes and densified mixed recycled material, improving concrete matrix bonding.</p>\",\"PeriodicalId\":18366,\"journal\":{\"name\":\"Materialwissenschaft und Werkstofftechnik\",\"volume\":\"56 4\",\"pages\":\"517-536\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialwissenschaft und Werkstofftechnik\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202400202\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202400202","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全球基础设施建设的快速扩张导致了建筑和拆除垃圾的大幅增加。本研究介绍了一种创新的方法,通过用水泥和纳米硅浆包裹技术处理由建筑和拆除废物产生的混凝土中的混合再生骨料。考虑水泥含量、纳米二氧化硅含量和水骨料比作为自变量,采用中心复合设计实验方法来优化水泥浆的处理。同时,吸水率和洛杉矶磨损目测值为响应目标值。多目标响应优化和可取性分析确定了最优水平。利用扫描电子显微镜、x射线衍射和x射线荧光分析处理后混合再生骨料立面的变化。此外,还测试了未经处理和优化处理的混合再生骨料在0%、25%、50%、75%和100%的比例下替代天然骨料的混凝土的和易性和机械性能。研究结果表明,50%的替代率改善了混凝土的性能,达到最佳百分比,这是由于涂层工艺填充了断裂孔和密实的混合再生材料,改善了混凝土基体的粘结性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ameliorating mechanical properties of treated mixed recycled aggregate concrete using a central composite design

Ameliorating mechanical properties of treated mixed recycled aggregate concrete using a central composite design

The rapid expansion of global infrastructure growth has caused a substantial rise in construction and demolition waste. This study introduces an innovative approach for investigating mixed recycled aggregate in concrete generated from construction and demolition waste by treating it with cement and nano-silica slurry wrapping techniques. A central composite design experimental methodology was used to optimise the slurry for treatment, considering cement content, nano-silica content, and water-to-aggregate ratio as independent variables. At the same time, water absorption and Los Angeles abrasion with visual inspection were response-targeted values. Multi-objective response optimisation and desirability analysis determined optimal levels. Scanning electron microscopy, x-ray diffraction, and x-ray fluorescence were used to analyse mixed recycled aggregate facade changes after treatment. In addition, concrete with untreated and optimised treated mixed recycled aggregate at 0 %, 25 %, 50 %, 75 %, and 100 % as a replacement for natural aggregate was tested for workability and mechanical properties. The findings showed that 50 % replacement improved concrete characteristics at the optimal percentage due to the coating process-filled fracture holes and densified mixed recycled material, improving concrete matrix bonding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materialwissenschaft und Werkstofftechnik
Materialwissenschaft und Werkstofftechnik 工程技术-材料科学:综合
CiteScore
2.10
自引率
9.10%
发文量
154
审稿时长
4-8 weeks
期刊介绍: Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing. Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline. Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信