Zhongxin Jin, Feng Lin, Caiying Li, Cheng Shao, Yang Xu, Fangze Li, Haijun Pang and Huiyuan Ma
{"title":"用于超级电容器电极的MoO2-Ni3 (PO4)2/NF异质结复合材料的原位制备","authors":"Zhongxin Jin, Feng Lin, Caiying Li, Cheng Shao, Yang Xu, Fangze Li, Haijun Pang and Huiyuan Ma","doi":"10.1039/D4RE00564C","DOIUrl":null,"url":null,"abstract":"<p >Supercapacitors, as highly regarded energy storage devices, have garnered vital attention in recent years. Developing electrode materials exhibiting great electrochemical performance is at the core of supercapacitor research. Constructing heterojunction structures can improve the electrochemical performance of electrode materials effectively. Heterojunction structures can mutually compensate for their limitations, facilitating electron transfer and reactions. Herein, a MoO<small><sub>2</sub></small>–Ni<small><sub>3</sub></small>(PO<small><sub>4</sub></small>)<small><sub>2</sub></small>/NF (NF = nickel foam) heterojunction was <em>in situ</em> synthesized on NF <em>via</em> a two-step method combining hydrothermal synthesis and chemical vapor deposition (CVD), using polyoxometalate (NH<small><sub>4</sub></small>)<small><sub>6</sub></small>[NiMo<small><sub>9</sub></small>O<small><sub>32</sub></small>]·6H<small><sub>2</sub></small>O as the precursor. This heterojunction provides more active sites and enhances conductivity. The MoO<small><sub>2</sub></small>–Ni<small><sub>3</sub></small>(PO<small><sub>4</sub></small>)<small><sub>2</sub></small>/NF heterojunction exhibits a galvanostatic charge–discharge (GCD) time of up to 643 s at a current density of 1 A g<small><sup>−1</sup></small>. It displays a specific capacitance of 396 F g<small><sup>−1</sup></small> and retains 82.2% after 1000 cycles. The asymmetric supercapacitor (ASC) device with this modified electrode material has 50% capacitance retention after 1000 cycles of charge and discharge. The specific capacitance of the ASC device at 1 A g<small><sup>−1</sup></small> current density is 30.5 F g<small><sup>−1</sup></small>, presenting an energy density of 3.8 W h kg<small><sup>−1</sup></small>, and a power density of 0.13 W kg<small><sup>−1</sup></small>. Therefore, the MoO<small><sub>2</sub></small>–Ni<small><sub>3</sub></small>(PO<small><sub>4</sub></small>)<small><sub>2</sub></small>/NF heterojunction, as an electrode material for supercapacitors, demonstrates excellent application potential.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 5","pages":" 1154-1163"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ fabrication of MoO2–Ni3(PO4)2/NF heterojunction composite material for application as a supercapacitor electrode†\",\"authors\":\"Zhongxin Jin, Feng Lin, Caiying Li, Cheng Shao, Yang Xu, Fangze Li, Haijun Pang and Huiyuan Ma\",\"doi\":\"10.1039/D4RE00564C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Supercapacitors, as highly regarded energy storage devices, have garnered vital attention in recent years. Developing electrode materials exhibiting great electrochemical performance is at the core of supercapacitor research. Constructing heterojunction structures can improve the electrochemical performance of electrode materials effectively. Heterojunction structures can mutually compensate for their limitations, facilitating electron transfer and reactions. Herein, a MoO<small><sub>2</sub></small>–Ni<small><sub>3</sub></small>(PO<small><sub>4</sub></small>)<small><sub>2</sub></small>/NF (NF = nickel foam) heterojunction was <em>in situ</em> synthesized on NF <em>via</em> a two-step method combining hydrothermal synthesis and chemical vapor deposition (CVD), using polyoxometalate (NH<small><sub>4</sub></small>)<small><sub>6</sub></small>[NiMo<small><sub>9</sub></small>O<small><sub>32</sub></small>]·6H<small><sub>2</sub></small>O as the precursor. This heterojunction provides more active sites and enhances conductivity. The MoO<small><sub>2</sub></small>–Ni<small><sub>3</sub></small>(PO<small><sub>4</sub></small>)<small><sub>2</sub></small>/NF heterojunction exhibits a galvanostatic charge–discharge (GCD) time of up to 643 s at a current density of 1 A g<small><sup>−1</sup></small>. It displays a specific capacitance of 396 F g<small><sup>−1</sup></small> and retains 82.2% after 1000 cycles. The asymmetric supercapacitor (ASC) device with this modified electrode material has 50% capacitance retention after 1000 cycles of charge and discharge. The specific capacitance of the ASC device at 1 A g<small><sup>−1</sup></small> current density is 30.5 F g<small><sup>−1</sup></small>, presenting an energy density of 3.8 W h kg<small><sup>−1</sup></small>, and a power density of 0.13 W kg<small><sup>−1</sup></small>. Therefore, the MoO<small><sub>2</sub></small>–Ni<small><sub>3</sub></small>(PO<small><sub>4</sub></small>)<small><sub>2</sub></small>/NF heterojunction, as an electrode material for supercapacitors, demonstrates excellent application potential.</p>\",\"PeriodicalId\":101,\"journal\":{\"name\":\"Reaction Chemistry & Engineering\",\"volume\":\" 5\",\"pages\":\" 1154-1163\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/re/d4re00564c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d4re00564c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
超级电容器作为一种备受推崇的能量存储设备,近年来引起了人们的极大关注。开发具有优异电化学性能的电极材料是超级电容器研究的核心。构建异质结结构可以有效地提高电极材料的电化学性能。异质结结构可以相互弥补它们的局限性,促进电子转移和反应。本文以多金属氧酸盐(NH4)6[NiMo9O32]·6H2O为前驱体,采用水热合成和化学气相沉积(CVD)相结合的两步法,在NF上原位合成了MoO2-Ni3 (PO4)2/NF (NF =泡沫镍)异质结。这种异质结提供了更多的活性位点并提高了导电性。MoO2-Ni3 (PO4)2/NF异质结在1 a g−1电流密度下的恒流充放电(GCD)时间可达643 s。它显示的比电容为396 F g−1,并在1000次循环后保持82.2%。采用该改性电极材料制备的非对称超级电容器(ASC)在1000次充放电循环后具有50%的电容保持率。在1a g−1电流密度下,ASC器件的比电容为30.5 F g−1,能量密度为3.8 W h kg−1,功率密度为0.13 W kg−1。因此,MoO2-Ni3 (PO4)2/NF异质结作为超级电容器的电极材料,具有良好的应用潜力。
In situ fabrication of MoO2–Ni3(PO4)2/NF heterojunction composite material for application as a supercapacitor electrode†
Supercapacitors, as highly regarded energy storage devices, have garnered vital attention in recent years. Developing electrode materials exhibiting great electrochemical performance is at the core of supercapacitor research. Constructing heterojunction structures can improve the electrochemical performance of electrode materials effectively. Heterojunction structures can mutually compensate for their limitations, facilitating electron transfer and reactions. Herein, a MoO2–Ni3(PO4)2/NF (NF = nickel foam) heterojunction was in situ synthesized on NF via a two-step method combining hydrothermal synthesis and chemical vapor deposition (CVD), using polyoxometalate (NH4)6[NiMo9O32]·6H2O as the precursor. This heterojunction provides more active sites and enhances conductivity. The MoO2–Ni3(PO4)2/NF heterojunction exhibits a galvanostatic charge–discharge (GCD) time of up to 643 s at a current density of 1 A g−1. It displays a specific capacitance of 396 F g−1 and retains 82.2% after 1000 cycles. The asymmetric supercapacitor (ASC) device with this modified electrode material has 50% capacitance retention after 1000 cycles of charge and discharge. The specific capacitance of the ASC device at 1 A g−1 current density is 30.5 F g−1, presenting an energy density of 3.8 W h kg−1, and a power density of 0.13 W kg−1. Therefore, the MoO2–Ni3(PO4)2/NF heterojunction, as an electrode material for supercapacitors, demonstrates excellent application potential.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.