基于深度双向自适应门控图卷积网络的时空交通预测

IF 3.5 1区 计算机科学 Q1 Multidisciplinary
Xin Wang;Jianhui Lv;Madini O. Alassafi;Fawaz E. Alsaadi;B. D. Parameshachari;Longhao Zou;Gang Feng;Zhonghua Liu
{"title":"基于深度双向自适应门控图卷积网络的时空交通预测","authors":"Xin Wang;Jianhui Lv;Madini O. Alassafi;Fawaz E. Alsaadi;B. D. Parameshachari;Longhao Zou;Gang Feng;Zhonghua Liu","doi":"10.26599/TST2024.9010134","DOIUrl":null,"url":null,"abstract":"With the advent of deep learning, various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data. This paper introduces a novel Deep Bi-directional Adaptive Gating Graph Convolutional Network (DBAG-GCN) model for spatio-temporal traffic forecasting. The proposed model leverages the power of graph convolutional networks to capture the spatial dependencies in the road network topology and incorporates bi-directional gating mechanisms to control the information flow adaptively. Furthermore, we introduce a multi-scale temporal convolution module to capture multi-scale temporal dynamics and a contextual attention mechanism to integrate external factors such as weather conditions and event information. Extensive experiments on real-world traffic datasets demonstrate the superior performance of DBAG-GCN compared to state-of-the-art baselines, achieving significant improvements in prediction accuracy and computational efficiency. The DBAG-GCN model provides a powerful and flexible framework for spatio-temporal traffic forecasting, paving the way for intelligent transportation management and urban planning.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 5","pages":"2060-2080"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10979652","citationCount":"0","resultStr":"{\"title\":\"Deep Bi-Directional Adaptive Gating Graph Convolutional Networks for Spatio-Temporal Traffic Forecasting\",\"authors\":\"Xin Wang;Jianhui Lv;Madini O. Alassafi;Fawaz E. Alsaadi;B. D. Parameshachari;Longhao Zou;Gang Feng;Zhonghua Liu\",\"doi\":\"10.26599/TST2024.9010134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of deep learning, various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data. This paper introduces a novel Deep Bi-directional Adaptive Gating Graph Convolutional Network (DBAG-GCN) model for spatio-temporal traffic forecasting. The proposed model leverages the power of graph convolutional networks to capture the spatial dependencies in the road network topology and incorporates bi-directional gating mechanisms to control the information flow adaptively. Furthermore, we introduce a multi-scale temporal convolution module to capture multi-scale temporal dynamics and a contextual attention mechanism to integrate external factors such as weather conditions and event information. Extensive experiments on real-world traffic datasets demonstrate the superior performance of DBAG-GCN compared to state-of-the-art baselines, achieving significant improvements in prediction accuracy and computational efficiency. The DBAG-GCN model provides a powerful and flexible framework for spatio-temporal traffic forecasting, paving the way for intelligent transportation management and urban planning.\",\"PeriodicalId\":48690,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":\"30 5\",\"pages\":\"2060-2080\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10979652\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10979652/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10979652/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

随着深度学习的出现,人们提出了各种深度神经网络架构来捕获交通数据中复杂的时空依赖关系。提出了一种新的深度双向自适应门控图卷积网络(DBAG-GCN)时空交通预测模型。该模型利用图卷积网络的能力来捕获道路网络拓扑中的空间依赖关系,并结合双向门控机制来自适应控制信息流。此外,我们引入了一个多尺度时间卷积模块来捕获多尺度时间动态,并引入了一个上下文注意机制来整合天气条件和事件信息等外部因素。在真实交通数据集上进行的大量实验表明,与最先进的基线相比,DBAG-GCN具有优越的性能,在预测精度和计算效率方面取得了显着提高。DBAG-GCN模型为交通时空预测提供了一个强大而灵活的框架,为智能交通管理和城市规划铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Bi-Directional Adaptive Gating Graph Convolutional Networks for Spatio-Temporal Traffic Forecasting
With the advent of deep learning, various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data. This paper introduces a novel Deep Bi-directional Adaptive Gating Graph Convolutional Network (DBAG-GCN) model for spatio-temporal traffic forecasting. The proposed model leverages the power of graph convolutional networks to capture the spatial dependencies in the road network topology and incorporates bi-directional gating mechanisms to control the information flow adaptively. Furthermore, we introduce a multi-scale temporal convolution module to capture multi-scale temporal dynamics and a contextual attention mechanism to integrate external factors such as weather conditions and event information. Extensive experiments on real-world traffic datasets demonstrate the superior performance of DBAG-GCN compared to state-of-the-art baselines, achieving significant improvements in prediction accuracy and computational efficiency. The DBAG-GCN model provides a powerful and flexible framework for spatio-temporal traffic forecasting, paving the way for intelligent transportation management and urban planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信