近红外图像的灰度辅助RGB图像转换

IF 6.6 1区 计算机科学 Q1 Multidisciplinary
Yunyi Gao;Qiankun Liu;Lin Gu;Ying Fu
{"title":"近红外图像的灰度辅助RGB图像转换","authors":"Yunyi Gao;Qiankun Liu;Lin Gu;Ying Fu","doi":"10.26599/TST.2024.9010115","DOIUrl":null,"url":null,"abstract":"Near-InfraRed (NIR) imaging technology plays a pivotal role in assisted driving and safety surveillance systems, yet its monochromatic nature and deficiency in detail limit its further application. Recent methods aim to recover the corresponding RGB image directly from the NIR image using Convolutional Neural Networks (CNN). However, these methods struggle with accurately recovering both luminance and chrominance information and the inherent deficiencies in NIR image details. In this paper, we propose grayscale-assisted RGB image restoration from NIR images to recover luminance and chrominance information in two stages. We address the complex NIR-to-RGB conversion challenge by decoupling it into two separate stages. First, it converts NIR to grayscale images, focusing on luminance learning. Then, it transforms grayscale to RGB images, concentrating on chrominance information. In addition, we incorporate frequency domain learning to shift the image processing from the spatial domain to the frequency domain, facilitating the restoration of the detailed textures often lost in NIR images. Empirical evaluations of our grayscale-assisted framework and existing state-of-the-art methods demonstrate its superior performance and yield more visually appealing results. Code is accessible at: https://github.com/Yiiclass/RING","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 5","pages":"2215-2226"},"PeriodicalIF":6.6000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10979784","citationCount":"0","resultStr":"{\"title\":\"Grayscale-Assisted RGB Image Conversion from Near-Infrared Images\",\"authors\":\"Yunyi Gao;Qiankun Liu;Lin Gu;Ying Fu\",\"doi\":\"10.26599/TST.2024.9010115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Near-InfraRed (NIR) imaging technology plays a pivotal role in assisted driving and safety surveillance systems, yet its monochromatic nature and deficiency in detail limit its further application. Recent methods aim to recover the corresponding RGB image directly from the NIR image using Convolutional Neural Networks (CNN). However, these methods struggle with accurately recovering both luminance and chrominance information and the inherent deficiencies in NIR image details. In this paper, we propose grayscale-assisted RGB image restoration from NIR images to recover luminance and chrominance information in two stages. We address the complex NIR-to-RGB conversion challenge by decoupling it into two separate stages. First, it converts NIR to grayscale images, focusing on luminance learning. Then, it transforms grayscale to RGB images, concentrating on chrominance information. In addition, we incorporate frequency domain learning to shift the image processing from the spatial domain to the frequency domain, facilitating the restoration of the detailed textures often lost in NIR images. Empirical evaluations of our grayscale-assisted framework and existing state-of-the-art methods demonstrate its superior performance and yield more visually appealing results. Code is accessible at: https://github.com/Yiiclass/RING\",\"PeriodicalId\":48690,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":\"30 5\",\"pages\":\"2215-2226\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10979784\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10979784/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10979784/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

近红外(NIR)成像技术在辅助驾驶和安全监控系统中发挥着至关重要的作用,但其单色性和细节性的不足限制了其进一步应用。最近的方法是利用卷积神经网络(CNN)直接从近红外图像中恢复相应的RGB图像。然而,这些方法难以准确地恢复亮度和色度信息以及近红外图像细节的固有缺陷。本文提出了灰度辅助RGB图像复原方法,分两个阶段从近红外图像中恢复亮度和色度信息。我们通过将其解耦为两个独立的阶段来解决复杂的nir到rgb转换挑战。首先,它将近红外图像转换为灰度图像,专注于亮度学习。然后,将灰度图像转换为RGB图像,集中处理色度信息。此外,我们结合频域学习将图像处理从空间域转移到频域,促进了近红外图像中经常丢失的细节纹理的恢复。我们的灰度辅助框架和现有的最先进的方法的经验评估表明,其优越的性能和产生更多的视觉吸引力的结果。代码可访问:https://github.com/Yiiclass/RING
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grayscale-Assisted RGB Image Conversion from Near-Infrared Images
Near-InfraRed (NIR) imaging technology plays a pivotal role in assisted driving and safety surveillance systems, yet its monochromatic nature and deficiency in detail limit its further application. Recent methods aim to recover the corresponding RGB image directly from the NIR image using Convolutional Neural Networks (CNN). However, these methods struggle with accurately recovering both luminance and chrominance information and the inherent deficiencies in NIR image details. In this paper, we propose grayscale-assisted RGB image restoration from NIR images to recover luminance and chrominance information in two stages. We address the complex NIR-to-RGB conversion challenge by decoupling it into two separate stages. First, it converts NIR to grayscale images, focusing on luminance learning. Then, it transforms grayscale to RGB images, concentrating on chrominance information. In addition, we incorporate frequency domain learning to shift the image processing from the spatial domain to the frequency domain, facilitating the restoration of the detailed textures often lost in NIR images. Empirical evaluations of our grayscale-assisted framework and existing state-of-the-art methods demonstrate its superior performance and yield more visually appealing results. Code is accessible at: https://github.com/Yiiclass/RING
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信