{"title":"啮齿动物竞技场多视点监视器(RAMM):一种用于啮齿动物多视点监测的摄像机同步摄影控制系统","authors":"Bingbin Liu;Yuxuan Qian;Jianxin Wang","doi":"10.26599/TST.2024.9010117","DOIUrl":null,"url":null,"abstract":"Although multi-view monitoring techniques have been widely applied in skinned model reconstruction and movement analysis, traditional systems using high-performance Personal Computers (PCs), or industrial cameras are often prohibitive due to high costs and limited scalability. Here, we introduce an affordable, scalable multi-view image acquisition system for skinned model reconstruction in animal studies, utilizing consumer Android devices and a wireless network for synchronized monitoring named Rodent Arena Multi-View Monitor (RAMM). It uses smartphones as camera nodes with local data storage, enabling cost-effective scalability. Its custom synchronization solution and portability make it ideal for research and education in rodent behavior analysis, offering a practical alternative for institutions with limited budgets. Furthermore, the portability and flexibility of this system make it an ideal tool for rodent skinned model research based on multi-view image acquisition. To evaluate the performance, we perform an oscilloscope analysis to ensure effectiveness of synchronization. A 45-camera node setup is built to highlight RAMM's cost efficiency and ease in constructing large-scale systems. Additionally, the data quality is validated using the Instant Neural Graphics Primitives (Instant-NGP) method. Remarkable results were achieved with a 30.49 dB PSNR by utilizing only 25 images with intrinsic and extrinsic parameters, fulfilling the requirements for well-synchronized data used in 3D representation algorithms.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 5","pages":"2195-2214"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10979787","citationCount":"0","resultStr":"{\"title\":\"Rodent Arena Multi-View Monitor (RAMM): A Camera Synchronized Photographic Control System for Multi-View Rodent Monitoring\",\"authors\":\"Bingbin Liu;Yuxuan Qian;Jianxin Wang\",\"doi\":\"10.26599/TST.2024.9010117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although multi-view monitoring techniques have been widely applied in skinned model reconstruction and movement analysis, traditional systems using high-performance Personal Computers (PCs), or industrial cameras are often prohibitive due to high costs and limited scalability. Here, we introduce an affordable, scalable multi-view image acquisition system for skinned model reconstruction in animal studies, utilizing consumer Android devices and a wireless network for synchronized monitoring named Rodent Arena Multi-View Monitor (RAMM). It uses smartphones as camera nodes with local data storage, enabling cost-effective scalability. Its custom synchronization solution and portability make it ideal for research and education in rodent behavior analysis, offering a practical alternative for institutions with limited budgets. Furthermore, the portability and flexibility of this system make it an ideal tool for rodent skinned model research based on multi-view image acquisition. To evaluate the performance, we perform an oscilloscope analysis to ensure effectiveness of synchronization. A 45-camera node setup is built to highlight RAMM's cost efficiency and ease in constructing large-scale systems. Additionally, the data quality is validated using the Instant Neural Graphics Primitives (Instant-NGP) method. Remarkable results were achieved with a 30.49 dB PSNR by utilizing only 25 images with intrinsic and extrinsic parameters, fulfilling the requirements for well-synchronized data used in 3D representation algorithms.\",\"PeriodicalId\":48690,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":\"30 5\",\"pages\":\"2195-2214\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10979787\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10979787/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10979787/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
Rodent Arena Multi-View Monitor (RAMM): A Camera Synchronized Photographic Control System for Multi-View Rodent Monitoring
Although multi-view monitoring techniques have been widely applied in skinned model reconstruction and movement analysis, traditional systems using high-performance Personal Computers (PCs), or industrial cameras are often prohibitive due to high costs and limited scalability. Here, we introduce an affordable, scalable multi-view image acquisition system for skinned model reconstruction in animal studies, utilizing consumer Android devices and a wireless network for synchronized monitoring named Rodent Arena Multi-View Monitor (RAMM). It uses smartphones as camera nodes with local data storage, enabling cost-effective scalability. Its custom synchronization solution and portability make it ideal for research and education in rodent behavior analysis, offering a practical alternative for institutions with limited budgets. Furthermore, the portability and flexibility of this system make it an ideal tool for rodent skinned model research based on multi-view image acquisition. To evaluate the performance, we perform an oscilloscope analysis to ensure effectiveness of synchronization. A 45-camera node setup is built to highlight RAMM's cost efficiency and ease in constructing large-scale systems. Additionally, the data quality is validated using the Instant Neural Graphics Primitives (Instant-NGP) method. Remarkable results were achieved with a 30.49 dB PSNR by utilizing only 25 images with intrinsic and extrinsic parameters, fulfilling the requirements for well-synchronized data used in 3D representation algorithms.
期刊介绍:
Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.