水+异丁醇/正丁醇+异丁醛/正丁醛混合物的汽液平衡和液液平衡

IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL
Lukas Winklbauer, Jieyu Qian, Jakob Burger
{"title":"水+异丁醇/正丁醇+异丁醛/正丁醛混合物的汽液平衡和液液平衡","authors":"Lukas Winklbauer,&nbsp;Jieyu Qian,&nbsp;Jakob Burger","doi":"10.1016/j.fluid.2025.114440","DOIUrl":null,"url":null,"abstract":"<div><div>Producing the oxygenate butylal from formaldehyde and butanol presents the challenge of purifying butylal from mixtures also containing water and butanol, which exhibit both binary and ternary miscibility gaps. We present measurement data on the liquid–liquid equilibrium in the binary systems (water + isobutylal) and (water + n-butylal) as well as in the ternary system (water + n-butanol + n-butylal) between 273<!--> <!-->K and 353<!--> <!-->K. Additionally, measurement data on the isobaric binary vapor–liquid equilibrium in the systems (isobutanol + isobutylal) and (n-butanol + n-butylal) is reported between 35<!--> <!-->kPa and 95<!--> <!-->kPa. The pure component vapor pressures of isobutylal and n-butylal are measured between 383<!--> <!-->K and 450<!--> <!-->K. A UNIQUAC model is developed to predict the vapor–liquid topology of the ternary system (water + butanol + butylal). This allows for identifying butylal as an obtainable distillation product for the most technically relevant feeds.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"596 ","pages":"Article 114440"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vapor–liquid and liquid–liquid equilibrium in mixtures of water + isobutanol/n-butanol + isobutylal/n-butylal\",\"authors\":\"Lukas Winklbauer,&nbsp;Jieyu Qian,&nbsp;Jakob Burger\",\"doi\":\"10.1016/j.fluid.2025.114440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Producing the oxygenate butylal from formaldehyde and butanol presents the challenge of purifying butylal from mixtures also containing water and butanol, which exhibit both binary and ternary miscibility gaps. We present measurement data on the liquid–liquid equilibrium in the binary systems (water + isobutylal) and (water + n-butylal) as well as in the ternary system (water + n-butanol + n-butylal) between 273<!--> <!-->K and 353<!--> <!-->K. Additionally, measurement data on the isobaric binary vapor–liquid equilibrium in the systems (isobutanol + isobutylal) and (n-butanol + n-butylal) is reported between 35<!--> <!-->kPa and 95<!--> <!-->kPa. The pure component vapor pressures of isobutylal and n-butylal are measured between 383<!--> <!-->K and 450<!--> <!-->K. A UNIQUAC model is developed to predict the vapor–liquid topology of the ternary system (water + butanol + butylal). This allows for identifying butylal as an obtainable distillation product for the most technically relevant feeds.</div></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"596 \",\"pages\":\"Article 114440\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378381225001104\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381225001104","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

从甲醛和丁醇中生产含氧丁醛提出了从含有水和丁醇的混合物中纯化丁醛的挑战,这些混合物具有二元和三元混相间隙。我们给出了二元体系(水+异丁醛)和三元体系(水+正丁醇+正丁醛)在273 K和353 K之间液-液平衡的测量数据。此外,在35 kPa和95 kPa范围内,报告了系统(异丁醇+异丁醛)和(正丁醇+正丁醛)等压二元汽液平衡的测量数据。在383 ~ 450 K之间测量了异丁醛和正丁醛的纯组分蒸气压。建立了一个UNIQUAC模型来预测三元体系(水+丁醇+丁醛)的气液拓扑结构。这允许确定丁醛作为技术上最相关的原料的可获得的蒸馏产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Vapor–liquid and liquid–liquid equilibrium in mixtures of water + isobutanol/n-butanol + isobutylal/n-butylal

Vapor–liquid and liquid–liquid equilibrium in mixtures of water + isobutanol/n-butanol + isobutylal/n-butylal
Producing the oxygenate butylal from formaldehyde and butanol presents the challenge of purifying butylal from mixtures also containing water and butanol, which exhibit both binary and ternary miscibility gaps. We present measurement data on the liquid–liquid equilibrium in the binary systems (water + isobutylal) and (water + n-butylal) as well as in the ternary system (water + n-butanol + n-butylal) between 273 K and 353 K. Additionally, measurement data on the isobaric binary vapor–liquid equilibrium in the systems (isobutanol + isobutylal) and (n-butanol + n-butylal) is reported between 35 kPa and 95 kPa. The pure component vapor pressures of isobutylal and n-butylal are measured between 383 K and 450 K. A UNIQUAC model is developed to predict the vapor–liquid topology of the ternary system (water + butanol + butylal). This allows for identifying butylal as an obtainable distillation product for the most technically relevant feeds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Phase Equilibria
Fluid Phase Equilibria 工程技术-工程:化工
CiteScore
5.30
自引率
15.40%
发文量
223
审稿时长
53 days
期刊介绍: Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results. Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信