基于ai驱动的CNN+KNN融合软件(ACKFS)基于症状的植物病害早期检测与分类

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Jayswal Hardik , Rishi Sanjaykumar Patel , Hetvi Desai , Hasti Vakani , Mithil Mistry , Nilesh Dubey
{"title":"基于ai驱动的CNN+KNN融合软件(ACKFS)基于症状的植物病害早期检测与分类","authors":"Jayswal Hardik ,&nbsp;Rishi Sanjaykumar Patel ,&nbsp;Hetvi Desai ,&nbsp;Hasti Vakani ,&nbsp;Mithil Mistry ,&nbsp;Nilesh Dubey","doi":"10.1016/j.simpa.2025.100755","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates and introduce an AI-driven CNN-KNN Fusion Software (ACKFS) for symptom-based early detection and classification of plant diseases. The approach integrates Convolutional Neural Networks and K-Nearest Neighbor’s to enhance classification accuracy. This research follows a structured four-phase process: pre-processing, segmentation, feature extraction, and classification. Using two datasets, ACKFS significantly improved accuracy to 94.56% and 87.52%, respectively. These results surpass the performance reported by previous researcher’s, demonstrating the effectiveness of CNN-KNN fusion for real-time plant disease detection on smart devices, contributing to precision agriculture and enhanced plant health monitoring.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"24 ","pages":"Article 100755"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symptom-based early detection and classification of plant diseases using AI-driven CNN+KNN Fusion Software (ACKFS)\",\"authors\":\"Jayswal Hardik ,&nbsp;Rishi Sanjaykumar Patel ,&nbsp;Hetvi Desai ,&nbsp;Hasti Vakani ,&nbsp;Mithil Mistry ,&nbsp;Nilesh Dubey\",\"doi\":\"10.1016/j.simpa.2025.100755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates and introduce an AI-driven CNN-KNN Fusion Software (ACKFS) for symptom-based early detection and classification of plant diseases. The approach integrates Convolutional Neural Networks and K-Nearest Neighbor’s to enhance classification accuracy. This research follows a structured four-phase process: pre-processing, segmentation, feature extraction, and classification. Using two datasets, ACKFS significantly improved accuracy to 94.56% and 87.52%, respectively. These results surpass the performance reported by previous researcher’s, demonstrating the effectiveness of CNN-KNN fusion for real-time plant disease detection on smart devices, contributing to precision agriculture and enhanced plant health monitoring.</div></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"24 \",\"pages\":\"Article 100755\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963825000156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963825000156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文研究并介绍了一种人工智能驱动的CNN-KNN融合软件(ACKFS),用于基于症状的植物病害早期检测和分类。该方法将卷积神经网络和k近邻相结合,提高了分类精度。本研究遵循结构化的四阶段过程:预处理、分割、特征提取和分类。在两个数据集上,ACKFS显著提高了准确率,分别达到94.56%和87.52%。这些结果超越了以往研究者报道的性能,证明了CNN-KNN融合在智能设备上实时植物病害检测的有效性,为精准农业和增强植物健康监测做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Symptom-based early detection and classification of plant diseases using AI-driven CNN+KNN Fusion Software (ACKFS)

Symptom-based early detection and classification of plant diseases using AI-driven CNN+KNN Fusion Software (ACKFS)
This paper investigates and introduce an AI-driven CNN-KNN Fusion Software (ACKFS) for symptom-based early detection and classification of plant diseases. The approach integrates Convolutional Neural Networks and K-Nearest Neighbor’s to enhance classification accuracy. This research follows a structured four-phase process: pre-processing, segmentation, feature extraction, and classification. Using two datasets, ACKFS significantly improved accuracy to 94.56% and 87.52%, respectively. These results surpass the performance reported by previous researcher’s, demonstrating the effectiveness of CNN-KNN fusion for real-time plant disease detection on smart devices, contributing to precision agriculture and enhanced plant health monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信