ArunaDevi Karuppasamy , Hamza zidoum , Majda Said Sultan Al-Rashdi , Maiya Al-Bahri
{"title":"用卷积自编码器优化乳腺癌诊断:通过修改损失函数增强性能","authors":"ArunaDevi Karuppasamy , Hamza zidoum , Majda Said Sultan Al-Rashdi , Maiya Al-Bahri","doi":"10.1016/j.ibmed.2025.100248","DOIUrl":null,"url":null,"abstract":"<div><div>The Deep Learning (DL) has demonstrated a significant impact on a various pattern recognition applications, resulting in significant advancements in areas such as visual recognition, autonomous cars, language processing, and healthcare. Nowadays, deep learning was widely applied on the medical images to identify the diseases efficiently. Still, the use of applications in clinical settings is now limited to a small number. The main factors to this might be due to an inadequate annotated data, noises in the images and challenges related to collecting data. Our research proposed a convolutional autoencoder to classify the breast cancer tumors, using the Sultan Qaboos University Hospital(SQUH) and BreakHis datasets. The proposed model named Convolutional AutoEncoder with modified Loss Function (CAE-LF) achieved a good performance, by attaining a F1-score of 0.90, recall of 0.89, and accuracy of 91%. The results obtained are comparable to those obtained in earlier researches. Additional analyses conducted on the SQUH dataset demonstrate that it yields a good performance with an F1-score of 0.91, 0.93, 0.92, and 0.93 for 4x, 10x, 20x, and 40x magnifications, respectively. Our study highlights the potential of deep learning in analyzing medical images to classify breast tumors.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100248"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing breast cancer diagnosis with convolutional autoencoders: Enhanced performance through modified loss functions\",\"authors\":\"ArunaDevi Karuppasamy , Hamza zidoum , Majda Said Sultan Al-Rashdi , Maiya Al-Bahri\",\"doi\":\"10.1016/j.ibmed.2025.100248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Deep Learning (DL) has demonstrated a significant impact on a various pattern recognition applications, resulting in significant advancements in areas such as visual recognition, autonomous cars, language processing, and healthcare. Nowadays, deep learning was widely applied on the medical images to identify the diseases efficiently. Still, the use of applications in clinical settings is now limited to a small number. The main factors to this might be due to an inadequate annotated data, noises in the images and challenges related to collecting data. Our research proposed a convolutional autoencoder to classify the breast cancer tumors, using the Sultan Qaboos University Hospital(SQUH) and BreakHis datasets. The proposed model named Convolutional AutoEncoder with modified Loss Function (CAE-LF) achieved a good performance, by attaining a F1-score of 0.90, recall of 0.89, and accuracy of 91%. The results obtained are comparable to those obtained in earlier researches. Additional analyses conducted on the SQUH dataset demonstrate that it yields a good performance with an F1-score of 0.91, 0.93, 0.92, and 0.93 for 4x, 10x, 20x, and 40x magnifications, respectively. Our study highlights the potential of deep learning in analyzing medical images to classify breast tumors.</div></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"11 \",\"pages\":\"Article 100248\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521225000523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing breast cancer diagnosis with convolutional autoencoders: Enhanced performance through modified loss functions
The Deep Learning (DL) has demonstrated a significant impact on a various pattern recognition applications, resulting in significant advancements in areas such as visual recognition, autonomous cars, language processing, and healthcare. Nowadays, deep learning was widely applied on the medical images to identify the diseases efficiently. Still, the use of applications in clinical settings is now limited to a small number. The main factors to this might be due to an inadequate annotated data, noises in the images and challenges related to collecting data. Our research proposed a convolutional autoencoder to classify the breast cancer tumors, using the Sultan Qaboos University Hospital(SQUH) and BreakHis datasets. The proposed model named Convolutional AutoEncoder with modified Loss Function (CAE-LF) achieved a good performance, by attaining a F1-score of 0.90, recall of 0.89, and accuracy of 91%. The results obtained are comparable to those obtained in earlier researches. Additional analyses conducted on the SQUH dataset demonstrate that it yields a good performance with an F1-score of 0.91, 0.93, 0.92, and 0.93 for 4x, 10x, 20x, and 40x magnifications, respectively. Our study highlights the potential of deep learning in analyzing medical images to classify breast tumors.