Bing Yang , Xiaoqing Zhang , Huihong Zhang , Sanqian Li , Risa Higashita , Jiang Liu
{"title":"医学图像分割中的结构不确定度估计","authors":"Bing Yang , Xiaoqing Zhang , Huihong Zhang , Sanqian Li , Risa Higashita , Jiang Liu","doi":"10.1016/j.media.2025.103602","DOIUrl":null,"url":null,"abstract":"<div><div>Precise segmentation and uncertainty estimation are crucial for error identification and correction in medical diagnostic assistance. Existing methods mainly rely on pixel-wise uncertainty estimations. They (1) neglect the global context, leading to erroneous uncertainty indications, and (2) bring attention interference, resulting in the waste of extensive details and potential understanding confusion. In this paper, we propose a novel structural uncertainty estimation method, based on Convolutional Neural Networks (CNN) and Active Shape Models (ASM), named SU-ASM, which incorporates global shape information for providing precise segmentation and uncertainty estimation. The SU-ASM consists of three components. Firstly, multi-task generation provides multiple outcomes to assist ASM initialization and shape optimization via a multi-task learning module. Secondly, information fusion involves the creation of a Combined Boundary Probability (CBP) and along with a rapid shape initialization algorithm, Key Landmark Template Matching (KLTM), to enhance boundary reliability and select appropriate shape templates. Finally, shape model fitting where multiple shape templates are matched to the CBP while maintaining their intrinsic shape characteristics. Fitted shapes generate segmentation results and structural uncertainty estimations. The SU-ASM has been validated on cardiac ultrasound dataset, ciliary muscle dataset of the anterior eye segment, and the chest X-ray dataset. It outperforms state-of-the-art methods in terms of segmentation and uncertainty estimation.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"103 ","pages":"Article 103602"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural uncertainty estimation for medical image segmentation\",\"authors\":\"Bing Yang , Xiaoqing Zhang , Huihong Zhang , Sanqian Li , Risa Higashita , Jiang Liu\",\"doi\":\"10.1016/j.media.2025.103602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Precise segmentation and uncertainty estimation are crucial for error identification and correction in medical diagnostic assistance. Existing methods mainly rely on pixel-wise uncertainty estimations. They (1) neglect the global context, leading to erroneous uncertainty indications, and (2) bring attention interference, resulting in the waste of extensive details and potential understanding confusion. In this paper, we propose a novel structural uncertainty estimation method, based on Convolutional Neural Networks (CNN) and Active Shape Models (ASM), named SU-ASM, which incorporates global shape information for providing precise segmentation and uncertainty estimation. The SU-ASM consists of three components. Firstly, multi-task generation provides multiple outcomes to assist ASM initialization and shape optimization via a multi-task learning module. Secondly, information fusion involves the creation of a Combined Boundary Probability (CBP) and along with a rapid shape initialization algorithm, Key Landmark Template Matching (KLTM), to enhance boundary reliability and select appropriate shape templates. Finally, shape model fitting where multiple shape templates are matched to the CBP while maintaining their intrinsic shape characteristics. Fitted shapes generate segmentation results and structural uncertainty estimations. The SU-ASM has been validated on cardiac ultrasound dataset, ciliary muscle dataset of the anterior eye segment, and the chest X-ray dataset. It outperforms state-of-the-art methods in terms of segmentation and uncertainty estimation.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"103 \",\"pages\":\"Article 103602\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841525001495\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525001495","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Structural uncertainty estimation for medical image segmentation
Precise segmentation and uncertainty estimation are crucial for error identification and correction in medical diagnostic assistance. Existing methods mainly rely on pixel-wise uncertainty estimations. They (1) neglect the global context, leading to erroneous uncertainty indications, and (2) bring attention interference, resulting in the waste of extensive details and potential understanding confusion. In this paper, we propose a novel structural uncertainty estimation method, based on Convolutional Neural Networks (CNN) and Active Shape Models (ASM), named SU-ASM, which incorporates global shape information for providing precise segmentation and uncertainty estimation. The SU-ASM consists of three components. Firstly, multi-task generation provides multiple outcomes to assist ASM initialization and shape optimization via a multi-task learning module. Secondly, information fusion involves the creation of a Combined Boundary Probability (CBP) and along with a rapid shape initialization algorithm, Key Landmark Template Matching (KLTM), to enhance boundary reliability and select appropriate shape templates. Finally, shape model fitting where multiple shape templates are matched to the CBP while maintaining their intrinsic shape characteristics. Fitted shapes generate segmentation results and structural uncertainty estimations. The SU-ASM has been validated on cardiac ultrasound dataset, ciliary muscle dataset of the anterior eye segment, and the chest X-ray dataset. It outperforms state-of-the-art methods in terms of segmentation and uncertainty estimation.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.