基于模拟推理的扩散MRI不确定性映射和概率示踪:与经典贝叶斯的比较

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
J.P. Manzano-Patrón , Michael Deistler , Cornelius Schröder , Theodore Kypraios , Pedro J. Gonçalves , Jakob H. Macke , Stamatios N. Sotiropoulos
{"title":"基于模拟推理的扩散MRI不确定性映射和概率示踪:与经典贝叶斯的比较","authors":"J.P. Manzano-Patrón ,&nbsp;Michael Deistler ,&nbsp;Cornelius Schröder ,&nbsp;Theodore Kypraios ,&nbsp;Pedro J. Gonçalves ,&nbsp;Jakob H. Macke ,&nbsp;Stamatios N. Sotiropoulos","doi":"10.1016/j.media.2025.103580","DOIUrl":null,"url":null,"abstract":"<div><div>Simulation-Based Inference (SBI) has recently emerged as a powerful framework for Bayesian inference: Neural networks are trained on simulations from a forward model, and learn to rapidly estimate posterior distributions. We here present an SBI framework for parametric spherical deconvolution of diffusion MRI data of the brain. We demonstrate its utility for estimating white matter fibre orientations, mapping uncertainty of voxel-based estimates and performing probabilistic tractography by spatially propagating fibre orientation uncertainty. We conduct an extensive comparison against established Bayesian methods based on Markov-Chain Monte-Carlo (MCMC) and find that: a) in-silico training can lead to calibrated SBI networks with accurate parameter estimates and uncertainty mapping for both single- and multi-shell diffusion MRI, b) SBI allows amortised inference of the posterior distribution of model parameters given unseen observations, which is orders of magnitude faster than MCMC, c) SBI-based tractography yields reconstructions that have a high level of agreement with their MCMC-based counterparts, equal to or higher than scan-rescan reproducibility of estimates. We further demonstrate how SBI design considerations (such as dealing with noise, defining priors and handling model selection) can affect performance, allowing us to identify optimal practices. Taken together, our results show that SBI provides a powerful alternative to classical Bayesian inference approaches for fast and accurate model estimation and uncertainty mapping in MRI.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"103 ","pages":"Article 103580"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty mapping and probabilistic tractography using Simulation-based Inference in diffusion MRI: A comparison with classical Bayes\",\"authors\":\"J.P. Manzano-Patrón ,&nbsp;Michael Deistler ,&nbsp;Cornelius Schröder ,&nbsp;Theodore Kypraios ,&nbsp;Pedro J. Gonçalves ,&nbsp;Jakob H. Macke ,&nbsp;Stamatios N. Sotiropoulos\",\"doi\":\"10.1016/j.media.2025.103580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Simulation-Based Inference (SBI) has recently emerged as a powerful framework for Bayesian inference: Neural networks are trained on simulations from a forward model, and learn to rapidly estimate posterior distributions. We here present an SBI framework for parametric spherical deconvolution of diffusion MRI data of the brain. We demonstrate its utility for estimating white matter fibre orientations, mapping uncertainty of voxel-based estimates and performing probabilistic tractography by spatially propagating fibre orientation uncertainty. We conduct an extensive comparison against established Bayesian methods based on Markov-Chain Monte-Carlo (MCMC) and find that: a) in-silico training can lead to calibrated SBI networks with accurate parameter estimates and uncertainty mapping for both single- and multi-shell diffusion MRI, b) SBI allows amortised inference of the posterior distribution of model parameters given unseen observations, which is orders of magnitude faster than MCMC, c) SBI-based tractography yields reconstructions that have a high level of agreement with their MCMC-based counterparts, equal to or higher than scan-rescan reproducibility of estimates. We further demonstrate how SBI design considerations (such as dealing with noise, defining priors and handling model selection) can affect performance, allowing us to identify optimal practices. Taken together, our results show that SBI provides a powerful alternative to classical Bayesian inference approaches for fast and accurate model estimation and uncertainty mapping in MRI.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"103 \",\"pages\":\"Article 103580\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841525001276\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525001276","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

基于模拟的推理(SBI)最近成为贝叶斯推理的一个强大框架:神经网络通过前向模型的模拟进行训练,并学习快速估计后验分布。我们在这里提出了一个SBI框架,用于脑弥散MRI数据的参数球形反褶积。我们展示了它在估计白质纤维方向、映射基于体素的估计的不确定性以及通过空间传播纤维方向不确定性执行概率轨迹成像方面的效用。我们与基于Markov-Chain Monte-Carlo (MCMC)的贝叶斯方法进行了广泛的比较,发现:a)计算机训练可以导致校准的SBI网络,具有准确的参数估计和单壳和多壳扩散MRI的不确定性映射,b) SBI允许对模型参数的后测分布进行平销推理,这比MCMC快了几个数量级,c)基于SBI的神经束成像产生的重建与基于MCMC的重建具有高度的一致性。等于或高于估计的扫描-重新扫描再现性。我们进一步展示了SBI设计考虑因素(如处理噪声、定义先验和处理模型选择)如何影响性能,从而使我们能够确定最佳实践。综上所述,我们的研究结果表明,SBI为MRI中快速准确的模型估计和不确定性映射提供了一个强大的替代经典贝叶斯推理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty mapping and probabilistic tractography using Simulation-based Inference in diffusion MRI: A comparison with classical Bayes
Simulation-Based Inference (SBI) has recently emerged as a powerful framework for Bayesian inference: Neural networks are trained on simulations from a forward model, and learn to rapidly estimate posterior distributions. We here present an SBI framework for parametric spherical deconvolution of diffusion MRI data of the brain. We demonstrate its utility for estimating white matter fibre orientations, mapping uncertainty of voxel-based estimates and performing probabilistic tractography by spatially propagating fibre orientation uncertainty. We conduct an extensive comparison against established Bayesian methods based on Markov-Chain Monte-Carlo (MCMC) and find that: a) in-silico training can lead to calibrated SBI networks with accurate parameter estimates and uncertainty mapping for both single- and multi-shell diffusion MRI, b) SBI allows amortised inference of the posterior distribution of model parameters given unseen observations, which is orders of magnitude faster than MCMC, c) SBI-based tractography yields reconstructions that have a high level of agreement with their MCMC-based counterparts, equal to or higher than scan-rescan reproducibility of estimates. We further demonstrate how SBI design considerations (such as dealing with noise, defining priors and handling model selection) can affect performance, allowing us to identify optimal practices. Taken together, our results show that SBI provides a powerful alternative to classical Bayesian inference approaches for fast and accurate model estimation and uncertainty mapping in MRI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信