J.P. Manzano-Patrón , Michael Deistler , Cornelius Schröder , Theodore Kypraios , Pedro J. Gonçalves , Jakob H. Macke , Stamatios N. Sotiropoulos
{"title":"基于模拟推理的扩散MRI不确定性映射和概率示踪:与经典贝叶斯的比较","authors":"J.P. Manzano-Patrón , Michael Deistler , Cornelius Schröder , Theodore Kypraios , Pedro J. Gonçalves , Jakob H. Macke , Stamatios N. Sotiropoulos","doi":"10.1016/j.media.2025.103580","DOIUrl":null,"url":null,"abstract":"<div><div>Simulation-Based Inference (SBI) has recently emerged as a powerful framework for Bayesian inference: Neural networks are trained on simulations from a forward model, and learn to rapidly estimate posterior distributions. We here present an SBI framework for parametric spherical deconvolution of diffusion MRI data of the brain. We demonstrate its utility for estimating white matter fibre orientations, mapping uncertainty of voxel-based estimates and performing probabilistic tractography by spatially propagating fibre orientation uncertainty. We conduct an extensive comparison against established Bayesian methods based on Markov-Chain Monte-Carlo (MCMC) and find that: a) in-silico training can lead to calibrated SBI networks with accurate parameter estimates and uncertainty mapping for both single- and multi-shell diffusion MRI, b) SBI allows amortised inference of the posterior distribution of model parameters given unseen observations, which is orders of magnitude faster than MCMC, c) SBI-based tractography yields reconstructions that have a high level of agreement with their MCMC-based counterparts, equal to or higher than scan-rescan reproducibility of estimates. We further demonstrate how SBI design considerations (such as dealing with noise, defining priors and handling model selection) can affect performance, allowing us to identify optimal practices. Taken together, our results show that SBI provides a powerful alternative to classical Bayesian inference approaches for fast and accurate model estimation and uncertainty mapping in MRI.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"103 ","pages":"Article 103580"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty mapping and probabilistic tractography using Simulation-based Inference in diffusion MRI: A comparison with classical Bayes\",\"authors\":\"J.P. Manzano-Patrón , Michael Deistler , Cornelius Schröder , Theodore Kypraios , Pedro J. Gonçalves , Jakob H. Macke , Stamatios N. Sotiropoulos\",\"doi\":\"10.1016/j.media.2025.103580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Simulation-Based Inference (SBI) has recently emerged as a powerful framework for Bayesian inference: Neural networks are trained on simulations from a forward model, and learn to rapidly estimate posterior distributions. We here present an SBI framework for parametric spherical deconvolution of diffusion MRI data of the brain. We demonstrate its utility for estimating white matter fibre orientations, mapping uncertainty of voxel-based estimates and performing probabilistic tractography by spatially propagating fibre orientation uncertainty. We conduct an extensive comparison against established Bayesian methods based on Markov-Chain Monte-Carlo (MCMC) and find that: a) in-silico training can lead to calibrated SBI networks with accurate parameter estimates and uncertainty mapping for both single- and multi-shell diffusion MRI, b) SBI allows amortised inference of the posterior distribution of model parameters given unseen observations, which is orders of magnitude faster than MCMC, c) SBI-based tractography yields reconstructions that have a high level of agreement with their MCMC-based counterparts, equal to or higher than scan-rescan reproducibility of estimates. We further demonstrate how SBI design considerations (such as dealing with noise, defining priors and handling model selection) can affect performance, allowing us to identify optimal practices. Taken together, our results show that SBI provides a powerful alternative to classical Bayesian inference approaches for fast and accurate model estimation and uncertainty mapping in MRI.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"103 \",\"pages\":\"Article 103580\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841525001276\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525001276","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Uncertainty mapping and probabilistic tractography using Simulation-based Inference in diffusion MRI: A comparison with classical Bayes
Simulation-Based Inference (SBI) has recently emerged as a powerful framework for Bayesian inference: Neural networks are trained on simulations from a forward model, and learn to rapidly estimate posterior distributions. We here present an SBI framework for parametric spherical deconvolution of diffusion MRI data of the brain. We demonstrate its utility for estimating white matter fibre orientations, mapping uncertainty of voxel-based estimates and performing probabilistic tractography by spatially propagating fibre orientation uncertainty. We conduct an extensive comparison against established Bayesian methods based on Markov-Chain Monte-Carlo (MCMC) and find that: a) in-silico training can lead to calibrated SBI networks with accurate parameter estimates and uncertainty mapping for both single- and multi-shell diffusion MRI, b) SBI allows amortised inference of the posterior distribution of model parameters given unseen observations, which is orders of magnitude faster than MCMC, c) SBI-based tractography yields reconstructions that have a high level of agreement with their MCMC-based counterparts, equal to or higher than scan-rescan reproducibility of estimates. We further demonstrate how SBI design considerations (such as dealing with noise, defining priors and handling model selection) can affect performance, allowing us to identify optimal practices. Taken together, our results show that SBI provides a powerful alternative to classical Bayesian inference approaches for fast and accurate model estimation and uncertainty mapping in MRI.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.