Wei Ma , Siyuan Chang , Joseph Páez Chávez , Songyuan Wang , Wenzhang Wu
{"title":"四自由度漂岩模型的非线性动力学及延拓分析","authors":"Wei Ma , Siyuan Chang , Joseph Páez Chávez , Songyuan Wang , Wenzhang Wu","doi":"10.1016/j.chaos.2025.116470","DOIUrl":null,"url":null,"abstract":"<div><div>A rock contact model is introduced, and the rock drilling process of the hydraulic drifter is established as a four degree-of-freedom (DOF) mechanical model. The mechanical model is simplified using a nondimensionalization method, resulting in a compact form. The periodic trajectories of the mechanical model are segmented to establish a mathematical model. Non-stick period-1 trajectories are obtained. The angular frequency and vertical offset are used as control parameters for bifurcation and basins of attraction. One-parameter continuation and two-parameter domain are conducted. Results indicate that: When <span><math><mrow><mn>0</mn><mo><</mo><mi>ω</mi><mo>≤</mo><mn>2</mn><mo>.</mo><mn>34</mn></mrow></math></span>, the model exhibits stick behavior. For <span><math><mrow><mn>2</mn><mo>.</mo><mn>35</mn><mo>≤</mo><mi>ω</mi><mo>≤</mo><mn>20</mn></mrow></math></span>, the model transitions to the non-stick mode. The fingered chaotic attractor emerges from stable periodic trajectories via period-doubling bifurcations. Period-doubling, saddle–node, and torus bifurcations are identified. To ensure operation on a period-1 trajectory, the angular frequency should be chosen within the range of <span><math><mrow><mn>2</mn><mo>.</mo><mn>35</mn><mo><</mo><mi>ω</mi><mo><</mo><mn>6</mn><mo>.</mo><mn>611</mn></mrow></math></span>, and the vertical offset should be within <span><math><mrow><mn>0</mn><mo>.</mo><mn>0467</mn><mo><</mo><mi>b</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>2125</mn></mrow></math></span>. The model exhibits multi-stability for <span><math><mrow><mn>0</mn><mo>.</mo><mn>046</mn><mo><</mo><mi>b</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>059</mn></mrow></math></span>, where the <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> trajectory demonstrates stronger global stability compared to <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> and quasi-period trajectories. The hysteresis caused by the torus and saddle–node bifurcations is found in the continuation analysis. According to the two-parameter domain analysis, in the range <span><math><mrow><mn>0</mn><mo><</mo><mi>ω</mi><mo>≤</mo><mn>20</mn></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>≤</mo><mi>b</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>215</mn></mrow></math></span>, the top three trajectory types in the proportion of the model are <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>0</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>. These results provide critical guidance for optimizing drilling parameters to avoid undesirable bifurcations and maintain stable periodic operation.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"197 ","pages":"Article 116470"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear dynamics and continuation analysis of a four degree-of-freedom drifter-rock model\",\"authors\":\"Wei Ma , Siyuan Chang , Joseph Páez Chávez , Songyuan Wang , Wenzhang Wu\",\"doi\":\"10.1016/j.chaos.2025.116470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A rock contact model is introduced, and the rock drilling process of the hydraulic drifter is established as a four degree-of-freedom (DOF) mechanical model. The mechanical model is simplified using a nondimensionalization method, resulting in a compact form. The periodic trajectories of the mechanical model are segmented to establish a mathematical model. Non-stick period-1 trajectories are obtained. The angular frequency and vertical offset are used as control parameters for bifurcation and basins of attraction. One-parameter continuation and two-parameter domain are conducted. Results indicate that: When <span><math><mrow><mn>0</mn><mo><</mo><mi>ω</mi><mo>≤</mo><mn>2</mn><mo>.</mo><mn>34</mn></mrow></math></span>, the model exhibits stick behavior. For <span><math><mrow><mn>2</mn><mo>.</mo><mn>35</mn><mo>≤</mo><mi>ω</mi><mo>≤</mo><mn>20</mn></mrow></math></span>, the model transitions to the non-stick mode. The fingered chaotic attractor emerges from stable periodic trajectories via period-doubling bifurcations. Period-doubling, saddle–node, and torus bifurcations are identified. To ensure operation on a period-1 trajectory, the angular frequency should be chosen within the range of <span><math><mrow><mn>2</mn><mo>.</mo><mn>35</mn><mo><</mo><mi>ω</mi><mo><</mo><mn>6</mn><mo>.</mo><mn>611</mn></mrow></math></span>, and the vertical offset should be within <span><math><mrow><mn>0</mn><mo>.</mo><mn>0467</mn><mo><</mo><mi>b</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>2125</mn></mrow></math></span>. The model exhibits multi-stability for <span><math><mrow><mn>0</mn><mo>.</mo><mn>046</mn><mo><</mo><mi>b</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>059</mn></mrow></math></span>, where the <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> trajectory demonstrates stronger global stability compared to <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> and quasi-period trajectories. The hysteresis caused by the torus and saddle–node bifurcations is found in the continuation analysis. According to the two-parameter domain analysis, in the range <span><math><mrow><mn>0</mn><mo><</mo><mi>ω</mi><mo>≤</mo><mn>20</mn></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>≤</mo><mi>b</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>215</mn></mrow></math></span>, the top three trajectory types in the proportion of the model are <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>0</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>. These results provide critical guidance for optimizing drilling parameters to avoid undesirable bifurcations and maintain stable periodic operation.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"197 \",\"pages\":\"Article 116470\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925004837\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925004837","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Nonlinear dynamics and continuation analysis of a four degree-of-freedom drifter-rock model
A rock contact model is introduced, and the rock drilling process of the hydraulic drifter is established as a four degree-of-freedom (DOF) mechanical model. The mechanical model is simplified using a nondimensionalization method, resulting in a compact form. The periodic trajectories of the mechanical model are segmented to establish a mathematical model. Non-stick period-1 trajectories are obtained. The angular frequency and vertical offset are used as control parameters for bifurcation and basins of attraction. One-parameter continuation and two-parameter domain are conducted. Results indicate that: When , the model exhibits stick behavior. For , the model transitions to the non-stick mode. The fingered chaotic attractor emerges from stable periodic trajectories via period-doubling bifurcations. Period-doubling, saddle–node, and torus bifurcations are identified. To ensure operation on a period-1 trajectory, the angular frequency should be chosen within the range of , and the vertical offset should be within . The model exhibits multi-stability for , where the trajectory demonstrates stronger global stability compared to and quasi-period trajectories. The hysteresis caused by the torus and saddle–node bifurcations is found in the continuation analysis. According to the two-parameter domain analysis, in the range and , the top three trajectory types in the proportion of the model are , , and . These results provide critical guidance for optimizing drilling parameters to avoid undesirable bifurcations and maintain stable periodic operation.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.