四自由度漂岩模型的非线性动力学及延拓分析

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Wei Ma , Siyuan Chang , Joseph Páez Chávez , Songyuan Wang , Wenzhang Wu
{"title":"四自由度漂岩模型的非线性动力学及延拓分析","authors":"Wei Ma ,&nbsp;Siyuan Chang ,&nbsp;Joseph Páez Chávez ,&nbsp;Songyuan Wang ,&nbsp;Wenzhang Wu","doi":"10.1016/j.chaos.2025.116470","DOIUrl":null,"url":null,"abstract":"<div><div>A rock contact model is introduced, and the rock drilling process of the hydraulic drifter is established as a four degree-of-freedom (DOF) mechanical model. The mechanical model is simplified using a nondimensionalization method, resulting in a compact form. The periodic trajectories of the mechanical model are segmented to establish a mathematical model. Non-stick period-1 trajectories are obtained. The angular frequency and vertical offset are used as control parameters for bifurcation and basins of attraction. One-parameter continuation and two-parameter domain are conducted. Results indicate that: When <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>ω</mi><mo>≤</mo><mn>2</mn><mo>.</mo><mn>34</mn></mrow></math></span>, the model exhibits stick behavior. For <span><math><mrow><mn>2</mn><mo>.</mo><mn>35</mn><mo>≤</mo><mi>ω</mi><mo>≤</mo><mn>20</mn></mrow></math></span>, the model transitions to the non-stick mode. The fingered chaotic attractor emerges from stable periodic trajectories via period-doubling bifurcations. Period-doubling, saddle–node, and torus bifurcations are identified. To ensure operation on a period-1 trajectory, the angular frequency should be chosen within the range of <span><math><mrow><mn>2</mn><mo>.</mo><mn>35</mn><mo>&lt;</mo><mi>ω</mi><mo>&lt;</mo><mn>6</mn><mo>.</mo><mn>611</mn></mrow></math></span>, and the vertical offset should be within <span><math><mrow><mn>0</mn><mo>.</mo><mn>0467</mn><mo>&lt;</mo><mi>b</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>2125</mn></mrow></math></span>. The model exhibits multi-stability for <span><math><mrow><mn>0</mn><mo>.</mo><mn>046</mn><mo>&lt;</mo><mi>b</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>059</mn></mrow></math></span>, where the <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> trajectory demonstrates stronger global stability compared to <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> and quasi-period trajectories. The hysteresis caused by the torus and saddle–node bifurcations is found in the continuation analysis. According to the two-parameter domain analysis, in the range <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>ω</mi><mo>≤</mo><mn>20</mn></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>≤</mo><mi>b</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>215</mn></mrow></math></span>, the top three trajectory types in the proportion of the model are <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>0</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>. These results provide critical guidance for optimizing drilling parameters to avoid undesirable bifurcations and maintain stable periodic operation.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"197 ","pages":"Article 116470"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear dynamics and continuation analysis of a four degree-of-freedom drifter-rock model\",\"authors\":\"Wei Ma ,&nbsp;Siyuan Chang ,&nbsp;Joseph Páez Chávez ,&nbsp;Songyuan Wang ,&nbsp;Wenzhang Wu\",\"doi\":\"10.1016/j.chaos.2025.116470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A rock contact model is introduced, and the rock drilling process of the hydraulic drifter is established as a four degree-of-freedom (DOF) mechanical model. The mechanical model is simplified using a nondimensionalization method, resulting in a compact form. The periodic trajectories of the mechanical model are segmented to establish a mathematical model. Non-stick period-1 trajectories are obtained. The angular frequency and vertical offset are used as control parameters for bifurcation and basins of attraction. One-parameter continuation and two-parameter domain are conducted. Results indicate that: When <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>ω</mi><mo>≤</mo><mn>2</mn><mo>.</mo><mn>34</mn></mrow></math></span>, the model exhibits stick behavior. For <span><math><mrow><mn>2</mn><mo>.</mo><mn>35</mn><mo>≤</mo><mi>ω</mi><mo>≤</mo><mn>20</mn></mrow></math></span>, the model transitions to the non-stick mode. The fingered chaotic attractor emerges from stable periodic trajectories via period-doubling bifurcations. Period-doubling, saddle–node, and torus bifurcations are identified. To ensure operation on a period-1 trajectory, the angular frequency should be chosen within the range of <span><math><mrow><mn>2</mn><mo>.</mo><mn>35</mn><mo>&lt;</mo><mi>ω</mi><mo>&lt;</mo><mn>6</mn><mo>.</mo><mn>611</mn></mrow></math></span>, and the vertical offset should be within <span><math><mrow><mn>0</mn><mo>.</mo><mn>0467</mn><mo>&lt;</mo><mi>b</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>2125</mn></mrow></math></span>. The model exhibits multi-stability for <span><math><mrow><mn>0</mn><mo>.</mo><mn>046</mn><mo>&lt;</mo><mi>b</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>059</mn></mrow></math></span>, where the <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> trajectory demonstrates stronger global stability compared to <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> and quasi-period trajectories. The hysteresis caused by the torus and saddle–node bifurcations is found in the continuation analysis. According to the two-parameter domain analysis, in the range <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>ω</mi><mo>≤</mo><mn>20</mn></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>≤</mo><mi>b</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>215</mn></mrow></math></span>, the top three trajectory types in the proportion of the model are <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>0</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>. These results provide critical guidance for optimizing drilling parameters to avoid undesirable bifurcations and maintain stable periodic operation.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"197 \",\"pages\":\"Article 116470\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925004837\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925004837","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

引入了岩石接触模型,建立了液压掘进机凿岩过程的四自由度力学模型。采用非量纲化方法对力学模型进行了简化,得到了紧致形式。对力学模型的周期轨迹进行分段,建立数学模型。得到非粘滞周期1轨迹。角频率和垂直偏移量作为分岔和吸引盆地的控制参数。进行了单参数延拓和双参数定义域分析。结果表明:当0<;ω≤2.34时,模型呈现粘滞行为;当2.35≤ω≤20时,模型过渡到不粘模式。指状混沌吸引子通过倍周期分岔从稳定的周期轨迹中产生。周期倍分岔、鞍节点分岔和环面分岔被识别。为保证在周期1轨道上运行,角频率应选择在2.35<ω<;6.611范围内,垂直偏移量应选择在0.0467<b<;0.2125范围内。模型在0.046<b<;0.059时表现出多重稳定性,其中p2q3轨迹比p2q1和准周期轨迹表现出更强的全局稳定性。在延拓分析中发现了环面和鞍节点分岔引起的迟滞。由双参数域分析可知,在0<;ω≤20和0≤b≤0.215范围内,模型占比前三的轨迹类型分别为p0q1、p1q1和p1q2。这些结果为优化钻井参数提供了重要指导,以避免不必要的分岔,并保持稳定的周期性运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear dynamics and continuation analysis of a four degree-of-freedom drifter-rock model
A rock contact model is introduced, and the rock drilling process of the hydraulic drifter is established as a four degree-of-freedom (DOF) mechanical model. The mechanical model is simplified using a nondimensionalization method, resulting in a compact form. The periodic trajectories of the mechanical model are segmented to establish a mathematical model. Non-stick period-1 trajectories are obtained. The angular frequency and vertical offset are used as control parameters for bifurcation and basins of attraction. One-parameter continuation and two-parameter domain are conducted. Results indicate that: When 0<ω2.34, the model exhibits stick behavior. For 2.35ω20, the model transitions to the non-stick mode. The fingered chaotic attractor emerges from stable periodic trajectories via period-doubling bifurcations. Period-doubling, saddle–node, and torus bifurcations are identified. To ensure operation on a period-1 trajectory, the angular frequency should be chosen within the range of 2.35<ω<6.611, and the vertical offset should be within 0.0467<b<0.2125. The model exhibits multi-stability for 0.046<b<0.059, where the p2q3 trajectory demonstrates stronger global stability compared to p2q1 and quasi-period trajectories. The hysteresis caused by the torus and saddle–node bifurcations is found in the continuation analysis. According to the two-parameter domain analysis, in the range 0<ω20 and 0b0.215, the top three trajectory types in the proportion of the model are p0q1, p1q1, and p1q2. These results provide critical guidance for optimizing drilling parameters to avoid undesirable bifurcations and maintain stable periodic operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信