通过相位延迟聚类分析建模忆阻器开关行为

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Dmitry Zhevnenko , Fedor Meshchaninov , Alexey Belov , Evgeny Gornev , Alexey Mikhaylov
{"title":"通过相位延迟聚类分析建模忆阻器开关行为","authors":"Dmitry Zhevnenko ,&nbsp;Fedor Meshchaninov ,&nbsp;Alexey Belov ,&nbsp;Evgeny Gornev ,&nbsp;Alexey Mikhaylov","doi":"10.1016/j.chaos.2025.116447","DOIUrl":null,"url":null,"abstract":"<div><div>Memristors are promising components of modern microelectronics, yet accurately simulating their switching dynamics remains a challenge due to the complexity of underlying physical processes. This work introduces a novel framework for memristor evolution modeling, incorporating a first-of-its-kind clustering approach based on the state change rate. Our method integrates statistical estimation of the conditional probability for each cluster with the NMRG neural network model to generate realistic time-current switching sequences. We validate our approach using an anionic ZrO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/TaO<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>-based memristor, demonstrating that it produces physically plausible switching trajectories. The proposed model offers a promising tool for third-party simulation systems, enabling accurate characterization of memristor behavior.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"197 ","pages":"Article 116447"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling memristor switching behavior through phase-delay cluster analysis\",\"authors\":\"Dmitry Zhevnenko ,&nbsp;Fedor Meshchaninov ,&nbsp;Alexey Belov ,&nbsp;Evgeny Gornev ,&nbsp;Alexey Mikhaylov\",\"doi\":\"10.1016/j.chaos.2025.116447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Memristors are promising components of modern microelectronics, yet accurately simulating their switching dynamics remains a challenge due to the complexity of underlying physical processes. This work introduces a novel framework for memristor evolution modeling, incorporating a first-of-its-kind clustering approach based on the state change rate. Our method integrates statistical estimation of the conditional probability for each cluster with the NMRG neural network model to generate realistic time-current switching sequences. We validate our approach using an anionic ZrO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/TaO<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>-based memristor, demonstrating that it produces physically plausible switching trajectories. The proposed model offers a promising tool for third-party simulation systems, enabling accurate characterization of memristor behavior.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"197 \",\"pages\":\"Article 116447\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925004606\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925004606","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

忆阻器是现代微电子器件中很有前途的元件,但由于其底层物理过程的复杂性,准确模拟其开关动力学仍然是一个挑战。这项工作引入了一种新的记忆电阻器进化建模框架,结合了基于状态变化率的首个同类聚类方法。该方法将各簇条件概率的统计估计与NMRG神经网络模型相结合,生成真实的时流切换序列。我们使用阴离子ZrO2/ taox基忆阻器验证了我们的方法,证明它产生了物理上合理的开关轨迹。所提出的模型为第三方仿真系统提供了一个有前途的工具,可以准确地表征忆阻器的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling memristor switching behavior through phase-delay cluster analysis
Memristors are promising components of modern microelectronics, yet accurately simulating their switching dynamics remains a challenge due to the complexity of underlying physical processes. This work introduces a novel framework for memristor evolution modeling, incorporating a first-of-its-kind clustering approach based on the state change rate. Our method integrates statistical estimation of the conditional probability for each cluster with the NMRG neural network model to generate realistic time-current switching sequences. We validate our approach using an anionic ZrO2/TaOx-based memristor, demonstrating that it produces physically plausible switching trajectories. The proposed model offers a promising tool for third-party simulation systems, enabling accurate characterization of memristor behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信