{"title":"隐藏莫特临界:统一近藤击穿和掺杂电荷转移绝缘体","authors":"Louk Rademaker","doi":"10.1016/j.physc.2025.1354720","DOIUrl":null,"url":null,"abstract":"<div><div>I show that the quantum critical points observed in heavy fermions (the ‘Kondo breakdown’) and in doped cuprates can be understood in terms of concealed Mott criticality. In this picture, one species of electrons undergoes a Mott localization transition, in the presence of metallic charge carries. As is shown in a simple toy model, this results in a Fermi surface jump at the transition, as well as mass enhancement on both the ‘large’ and ‘small’ Fermi surface side of the transition, consistent with the experimental observations.</div></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":"633 ","pages":"Article 1354720"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concealed Mott criticality: Unifying the Kondo breakdown and doped charge-transfer insulators\",\"authors\":\"Louk Rademaker\",\"doi\":\"10.1016/j.physc.2025.1354720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>I show that the quantum critical points observed in heavy fermions (the ‘Kondo breakdown’) and in doped cuprates can be understood in terms of concealed Mott criticality. In this picture, one species of electrons undergoes a Mott localization transition, in the presence of metallic charge carries. As is shown in a simple toy model, this results in a Fermi surface jump at the transition, as well as mass enhancement on both the ‘large’ and ‘small’ Fermi surface side of the transition, consistent with the experimental observations.</div></div>\",\"PeriodicalId\":20159,\"journal\":{\"name\":\"Physica C-superconductivity and Its Applications\",\"volume\":\"633 \",\"pages\":\"Article 1354720\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica C-superconductivity and Its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921453425000735\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453425000735","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Concealed Mott criticality: Unifying the Kondo breakdown and doped charge-transfer insulators
I show that the quantum critical points observed in heavy fermions (the ‘Kondo breakdown’) and in doped cuprates can be understood in terms of concealed Mott criticality. In this picture, one species of electrons undergoes a Mott localization transition, in the presence of metallic charge carries. As is shown in a simple toy model, this results in a Fermi surface jump at the transition, as well as mass enhancement on both the ‘large’ and ‘small’ Fermi surface side of the transition, consistent with the experimental observations.
期刊介绍:
Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity.
The main goal of the journal is to publish:
1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods.
2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance.
3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices.
The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.