Guanqi Wang , Jiahang Li , Li Zhou , Peng Wang , Xiaoming Zhang , Hongkuan Yuan , Tie Yang , Tianran Yang
{"title":"二维二元C4X2化合物(X = N, P, As)的二次节点和方节点线研究","authors":"Guanqi Wang , Jiahang Li , Li Zhou , Peng Wang , Xiaoming Zhang , Hongkuan Yuan , Tie Yang , Tianran Yang","doi":"10.1016/j.physe.2025.116279","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, the investigation of topological states in two dimensional materials has gained prominence, serving as a complementary area to studies of three dimensional systems. This research presents the exceptional topological properties of the monolayer binary compounds C<sub>4</sub>X<sub>2</sub> (X = N, P, As) through theoretical calculations. These compounds are characterized by a simple electronic structure consisting of only two bands near the Fermi energy and their band crossing leads to noteworthy topological features, specifically a quadratic nodal point and a Weyl square nodal line. A comprehensive analysis of the mechanisms underlying band formation and dispersion conditions has been conducted. The edge states associated with these compounds emerge from the nodal point and extend towards the nodal line, exhibiting extensive spatial distribution. The lightweight constituent elements of these materials ensure that both the topological features and edge states maintain stability, even when accounting for spin-orbit coupling effects. To enhance practical applicability, this study has also assessed the strain-dependent behaviors of the topological states alongside the anisotropic mechanical properties of the materials. Collectively, the investigation of these ideal topological states, in conjunction with the stability of the material candidates, lays a robust foundation for future experimental research. This work has the potential to facilitate significant advancements in the rapidly evolving field of two-dimensional topological materials.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"172 ","pages":"Article 116279"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring quadratic nodal point and square nodal line in two dimensional binary C4X2 compounds (X = N, P, As)\",\"authors\":\"Guanqi Wang , Jiahang Li , Li Zhou , Peng Wang , Xiaoming Zhang , Hongkuan Yuan , Tie Yang , Tianran Yang\",\"doi\":\"10.1016/j.physe.2025.116279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, the investigation of topological states in two dimensional materials has gained prominence, serving as a complementary area to studies of three dimensional systems. This research presents the exceptional topological properties of the monolayer binary compounds C<sub>4</sub>X<sub>2</sub> (X = N, P, As) through theoretical calculations. These compounds are characterized by a simple electronic structure consisting of only two bands near the Fermi energy and their band crossing leads to noteworthy topological features, specifically a quadratic nodal point and a Weyl square nodal line. A comprehensive analysis of the mechanisms underlying band formation and dispersion conditions has been conducted. The edge states associated with these compounds emerge from the nodal point and extend towards the nodal line, exhibiting extensive spatial distribution. The lightweight constituent elements of these materials ensure that both the topological features and edge states maintain stability, even when accounting for spin-orbit coupling effects. To enhance practical applicability, this study has also assessed the strain-dependent behaviors of the topological states alongside the anisotropic mechanical properties of the materials. Collectively, the investigation of these ideal topological states, in conjunction with the stability of the material candidates, lays a robust foundation for future experimental research. This work has the potential to facilitate significant advancements in the rapidly evolving field of two-dimensional topological materials.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"172 \",\"pages\":\"Article 116279\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947725001080\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725001080","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Exploring quadratic nodal point and square nodal line in two dimensional binary C4X2 compounds (X = N, P, As)
Recently, the investigation of topological states in two dimensional materials has gained prominence, serving as a complementary area to studies of three dimensional systems. This research presents the exceptional topological properties of the monolayer binary compounds C4X2 (X = N, P, As) through theoretical calculations. These compounds are characterized by a simple electronic structure consisting of only two bands near the Fermi energy and their band crossing leads to noteworthy topological features, specifically a quadratic nodal point and a Weyl square nodal line. A comprehensive analysis of the mechanisms underlying band formation and dispersion conditions has been conducted. The edge states associated with these compounds emerge from the nodal point and extend towards the nodal line, exhibiting extensive spatial distribution. The lightweight constituent elements of these materials ensure that both the topological features and edge states maintain stability, even when accounting for spin-orbit coupling effects. To enhance practical applicability, this study has also assessed the strain-dependent behaviors of the topological states alongside the anisotropic mechanical properties of the materials. Collectively, the investigation of these ideal topological states, in conjunction with the stability of the material candidates, lays a robust foundation for future experimental research. This work has the potential to facilitate significant advancements in the rapidly evolving field of two-dimensional topological materials.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures