Wojciech Chaladaj , María C. Arufe , Fátima Lucio-Martínez , Juan Fafián-Labora
{"title":"他莫昔芬衍生的全氟烷基烯烃治疗乳腺癌的研究","authors":"Wojciech Chaladaj , María C. Arufe , Fátima Lucio-Martínez , Juan Fafián-Labora","doi":"10.1016/j.bioorg.2025.108525","DOIUrl":null,"url":null,"abstract":"<div><div>Estrogen-responsive breast cancer has been treated with tamoxifen since 1998, yet challenges such as limited selectivity and emerging resistance remain significant hurdles to improving therapeutic outcomes. In recent years, the incorporation of fluorine atoms in the structure of potential drugs has gained importance due to their unique properties. Perfluoroalkyl chains, known for their chemical inertness and ability to target estrogen, offer promising modifications to improve treatment efficacy. In this study, we evaluated the biological activity of 21 perfluoroalkylated tamoxifen derivatives, synthesized under mild conditions with high stereoselectivity. Seven of these compounds exhibited superior cytotoxic and selectivity activity against estrogen receptor-positive breast cancer cells (MCF-7), with IC50 values of 10.68–18.18 nM compared to 29.41 nM for 4-hydroxytamoxifen, which is used in standard therapy. Preliminary mechanism-of-action studies, supported by siRNA knockdown of <em>ESR1</em> (the estrogen receptor gene), revealed that the compounds act through a similar mechanism to tamoxifen, further confirming their potential as next-generation therapeutic agents for estrogen receptor-positive breast cancer.</div></div>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"161 ","pages":"Article 108525"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of tamoxifen derived perfluoroalkylated olefins in breast cancer treatment\",\"authors\":\"Wojciech Chaladaj , María C. Arufe , Fátima Lucio-Martínez , Juan Fafián-Labora\",\"doi\":\"10.1016/j.bioorg.2025.108525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Estrogen-responsive breast cancer has been treated with tamoxifen since 1998, yet challenges such as limited selectivity and emerging resistance remain significant hurdles to improving therapeutic outcomes. In recent years, the incorporation of fluorine atoms in the structure of potential drugs has gained importance due to their unique properties. Perfluoroalkyl chains, known for their chemical inertness and ability to target estrogen, offer promising modifications to improve treatment efficacy. In this study, we evaluated the biological activity of 21 perfluoroalkylated tamoxifen derivatives, synthesized under mild conditions with high stereoselectivity. Seven of these compounds exhibited superior cytotoxic and selectivity activity against estrogen receptor-positive breast cancer cells (MCF-7), with IC50 values of 10.68–18.18 nM compared to 29.41 nM for 4-hydroxytamoxifen, which is used in standard therapy. Preliminary mechanism-of-action studies, supported by siRNA knockdown of <em>ESR1</em> (the estrogen receptor gene), revealed that the compounds act through a similar mechanism to tamoxifen, further confirming their potential as next-generation therapeutic agents for estrogen receptor-positive breast cancer.</div></div>\",\"PeriodicalId\":257,\"journal\":{\"name\":\"Bioorganic Chemistry\",\"volume\":\"161 \",\"pages\":\"Article 108525\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045206825004055\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045206825004055","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Study of tamoxifen derived perfluoroalkylated olefins in breast cancer treatment
Estrogen-responsive breast cancer has been treated with tamoxifen since 1998, yet challenges such as limited selectivity and emerging resistance remain significant hurdles to improving therapeutic outcomes. In recent years, the incorporation of fluorine atoms in the structure of potential drugs has gained importance due to their unique properties. Perfluoroalkyl chains, known for their chemical inertness and ability to target estrogen, offer promising modifications to improve treatment efficacy. In this study, we evaluated the biological activity of 21 perfluoroalkylated tamoxifen derivatives, synthesized under mild conditions with high stereoselectivity. Seven of these compounds exhibited superior cytotoxic and selectivity activity against estrogen receptor-positive breast cancer cells (MCF-7), with IC50 values of 10.68–18.18 nM compared to 29.41 nM for 4-hydroxytamoxifen, which is used in standard therapy. Preliminary mechanism-of-action studies, supported by siRNA knockdown of ESR1 (the estrogen receptor gene), revealed that the compounds act through a similar mechanism to tamoxifen, further confirming their potential as next-generation therapeutic agents for estrogen receptor-positive breast cancer.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.