{"title":"探讨zno - peg -槲皮素纳米颗粒的抗毒机制:破坏生物膜、减弱毒力因子和抑制致病性铜绿假单胞菌的细胞侵袭","authors":"Fatemeh Esnaashari , Ghazaleh Nikzad , Hossein Zahmatkesh , Hojjatolah Zamani","doi":"10.1016/j.bioorg.2025.108527","DOIUrl":null,"url":null,"abstract":"<div><div>The dense biofilm architecture and efflux pump activity play critical roles in <em>Pseudomonas aeruginosa</em> infections by hindering the accumulation and long-term efficacy of antibacterial agents within bacterial cells. The development of engineered nanoparticles capable of penetrating the polysaccharide matrix of biofilms represents a promising strategy for addressing bacterial infections. This is the first report on the synthesis of quercetin-functionalized PEGylated ZnO nanoparticles (ZnO-PEG-QUE NPs) and the evaluation of their anti-biofilm activity against pathogenic strains of <em>P. aeruginosa</em>. The synthesized NPs exhibited spherical shapes with an average size of 59.52 nm. ZnO-PEG-QUE NPs demonstrated biofilm inhibitory levels between 49 % and 67 %, and significantly reduced the production of total exopolysaccharides, alginate, and pellicle by 64.61 %–71.69 %, 30.47 %–45.36 %, and 24.22 %–85.97 %, respectively. ZnO-PEG-QUE NPs not only inhibited early-stage biofilm formation but also disrupted mature biofilms, indicating a dual mode of action against both biofilm development and persistence. Based on our findings, ZnO-PEG-QUE NPs effectively eradicated mature biofilms by 67.2 %–72 % and significantly reduced the metabolic activity and viable cells of preformed biofilms to 34.12 %–55.57 % and 6.25–8.15 log CFU, respectively. Electron and fluorescence microscopy analyses also confirmed the antibiofilm potential of ZnO-PEG-QUE NPs. Furthermore, bacterial adhesion and invasion to HDF cells were significantly diminished in the NP-treated groups. The attenuation of efflux pump activity in the NP-treated strains was confirmed using the EtBr-agar cartwheel assay. Taken together, these findings highlight the therapeutic potential of ZnO-PEG-QUE NPs as a novel and effective strategy to combat biofilm-associated infections, warranting further investigation in preclinical models.</div></div>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"161 ","pages":"Article 108527"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the antivirulence mechanisms of ZnO-PEG-quercetin nanoparticles: Biofilm disruption, attenuation of virulent factors, and cell invasion suppression against pathogenic Pseudomonas aeruginosa\",\"authors\":\"Fatemeh Esnaashari , Ghazaleh Nikzad , Hossein Zahmatkesh , Hojjatolah Zamani\",\"doi\":\"10.1016/j.bioorg.2025.108527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The dense biofilm architecture and efflux pump activity play critical roles in <em>Pseudomonas aeruginosa</em> infections by hindering the accumulation and long-term efficacy of antibacterial agents within bacterial cells. The development of engineered nanoparticles capable of penetrating the polysaccharide matrix of biofilms represents a promising strategy for addressing bacterial infections. This is the first report on the synthesis of quercetin-functionalized PEGylated ZnO nanoparticles (ZnO-PEG-QUE NPs) and the evaluation of their anti-biofilm activity against pathogenic strains of <em>P. aeruginosa</em>. The synthesized NPs exhibited spherical shapes with an average size of 59.52 nm. ZnO-PEG-QUE NPs demonstrated biofilm inhibitory levels between 49 % and 67 %, and significantly reduced the production of total exopolysaccharides, alginate, and pellicle by 64.61 %–71.69 %, 30.47 %–45.36 %, and 24.22 %–85.97 %, respectively. ZnO-PEG-QUE NPs not only inhibited early-stage biofilm formation but also disrupted mature biofilms, indicating a dual mode of action against both biofilm development and persistence. Based on our findings, ZnO-PEG-QUE NPs effectively eradicated mature biofilms by 67.2 %–72 % and significantly reduced the metabolic activity and viable cells of preformed biofilms to 34.12 %–55.57 % and 6.25–8.15 log CFU, respectively. Electron and fluorescence microscopy analyses also confirmed the antibiofilm potential of ZnO-PEG-QUE NPs. Furthermore, bacterial adhesion and invasion to HDF cells were significantly diminished in the NP-treated groups. The attenuation of efflux pump activity in the NP-treated strains was confirmed using the EtBr-agar cartwheel assay. Taken together, these findings highlight the therapeutic potential of ZnO-PEG-QUE NPs as a novel and effective strategy to combat biofilm-associated infections, warranting further investigation in preclinical models.</div></div>\",\"PeriodicalId\":257,\"journal\":{\"name\":\"Bioorganic Chemistry\",\"volume\":\"161 \",\"pages\":\"Article 108527\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045206825004079\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045206825004079","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exploring the antivirulence mechanisms of ZnO-PEG-quercetin nanoparticles: Biofilm disruption, attenuation of virulent factors, and cell invasion suppression against pathogenic Pseudomonas aeruginosa
The dense biofilm architecture and efflux pump activity play critical roles in Pseudomonas aeruginosa infections by hindering the accumulation and long-term efficacy of antibacterial agents within bacterial cells. The development of engineered nanoparticles capable of penetrating the polysaccharide matrix of biofilms represents a promising strategy for addressing bacterial infections. This is the first report on the synthesis of quercetin-functionalized PEGylated ZnO nanoparticles (ZnO-PEG-QUE NPs) and the evaluation of their anti-biofilm activity against pathogenic strains of P. aeruginosa. The synthesized NPs exhibited spherical shapes with an average size of 59.52 nm. ZnO-PEG-QUE NPs demonstrated biofilm inhibitory levels between 49 % and 67 %, and significantly reduced the production of total exopolysaccharides, alginate, and pellicle by 64.61 %–71.69 %, 30.47 %–45.36 %, and 24.22 %–85.97 %, respectively. ZnO-PEG-QUE NPs not only inhibited early-stage biofilm formation but also disrupted mature biofilms, indicating a dual mode of action against both biofilm development and persistence. Based on our findings, ZnO-PEG-QUE NPs effectively eradicated mature biofilms by 67.2 %–72 % and significantly reduced the metabolic activity and viable cells of preformed biofilms to 34.12 %–55.57 % and 6.25–8.15 log CFU, respectively. Electron and fluorescence microscopy analyses also confirmed the antibiofilm potential of ZnO-PEG-QUE NPs. Furthermore, bacterial adhesion and invasion to HDF cells were significantly diminished in the NP-treated groups. The attenuation of efflux pump activity in the NP-treated strains was confirmed using the EtBr-agar cartwheel assay. Taken together, these findings highlight the therapeutic potential of ZnO-PEG-QUE NPs as a novel and effective strategy to combat biofilm-associated infections, warranting further investigation in preclinical models.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.