基于实例序列匹配的跨模态关联的少镜头参考视频单目标和多目标分割

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Heng Liu, Guanghui Li, Mingqi Gao, Xiantong Zhen, Feng Zheng, Yang Wang
{"title":"基于实例序列匹配的跨模态关联的少镜头参考视频单目标和多目标分割","authors":"Heng Liu, Guanghui Li, Mingqi Gao, Xiantong Zhen, Feng Zheng, Yang Wang","doi":"10.1007/s11263-025-02444-0","DOIUrl":null,"url":null,"abstract":"<p>Referring Video Object Segmentation (RVOS) aims to segment specific objects in videos based on the provided natural language descriptions. As a new supervised visual learning task, achieving RVOS for a given scene requires a substantial amount of annotated data. However, only minimal annotations are usually available for new scenes in realistic scenarios. Another practical problem is that, apart from a single object, multiple objects of the same category coexist in the same scene. Both of these issues may significantly reduce the performance of existing RVOS methods in handling real-world applications. In this paper, we propose a simple yet effective model to address these issues by incorporating a newly designed cross-modal affinity (CMA) module based on a Transformer architecture. The CMA module facilitates the establishment of multi-modal affinity over a limited number of samples, allowing the rapid acquisition of new semantic information while fostering the model’s adaptability to diverse scenarios. Furthermore, we extend our FS-RVOS approach to multiple objects through a new instance sequence matching module over CMA, which filters out all object trajectories with similarity to language features that exceed a matching threshold, thereby achieving few-shot referring multi-object segmentation (FS-RVMOS). To foster research in this field, we establish a new dataset based on currently available datasets, which covers many scenarios in terms of single-object and multi-object data, hence effectively simulating real-world scenes. Extensive experiments and comparative analyses underscore the exceptional performance of our proposed FS-RVOS and FS-RVMOS methods. Our method consistently outperforms existing related approaches through practical performance evaluations and robustness studies, achieving optimal performance on metrics across diverse benchmark tests.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"25 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Few-Shot Referring Video Single- and Multi-Object Segmentation Via Cross-Modal Affinity with Instance Sequence Matching\",\"authors\":\"Heng Liu, Guanghui Li, Mingqi Gao, Xiantong Zhen, Feng Zheng, Yang Wang\",\"doi\":\"10.1007/s11263-025-02444-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Referring Video Object Segmentation (RVOS) aims to segment specific objects in videos based on the provided natural language descriptions. As a new supervised visual learning task, achieving RVOS for a given scene requires a substantial amount of annotated data. However, only minimal annotations are usually available for new scenes in realistic scenarios. Another practical problem is that, apart from a single object, multiple objects of the same category coexist in the same scene. Both of these issues may significantly reduce the performance of existing RVOS methods in handling real-world applications. In this paper, we propose a simple yet effective model to address these issues by incorporating a newly designed cross-modal affinity (CMA) module based on a Transformer architecture. The CMA module facilitates the establishment of multi-modal affinity over a limited number of samples, allowing the rapid acquisition of new semantic information while fostering the model’s adaptability to diverse scenarios. Furthermore, we extend our FS-RVOS approach to multiple objects through a new instance sequence matching module over CMA, which filters out all object trajectories with similarity to language features that exceed a matching threshold, thereby achieving few-shot referring multi-object segmentation (FS-RVMOS). To foster research in this field, we establish a new dataset based on currently available datasets, which covers many scenarios in terms of single-object and multi-object data, hence effectively simulating real-world scenes. Extensive experiments and comparative analyses underscore the exceptional performance of our proposed FS-RVOS and FS-RVMOS methods. Our method consistently outperforms existing related approaches through practical performance evaluations and robustness studies, achieving optimal performance on metrics across diverse benchmark tests.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-025-02444-0\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02444-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

参考视频对象分割(RVOS)旨在根据提供的自然语言描述对视频中的特定对象进行分割。作为一种新的监督式视觉学习任务,实现给定场景的RVOS需要大量的标注数据。然而,对于现实场景中的新场景,通常只有最小的注释可用。另一个实际问题是,除了单一对象之外,同一类别的多个对象在同一场景中共存。这两个问题可能会显著降低现有RVOS方法在处理实际应用程序时的性能。在本文中,我们提出了一个简单而有效的模型,通过结合基于Transformer架构的新设计的跨模态关联(CMA)模块来解决这些问题。CMA模块有助于在有限数量的样本上建立多模态亲和力,允许快速获取新的语义信息,同时培养模型对不同场景的适应性。此外,我们通过一个新的实例序列匹配模块将FS-RVOS方法扩展到多个目标,该模块过滤掉所有与语言特征相似且超过匹配阈值的目标轨迹,从而实现少镜头参考多目标分割(FS-RVMOS)。为了促进这一领域的研究,我们基于现有的数据集建立了一个新的数据集,该数据集涵盖了单目标和多目标数据的许多场景,从而有效地模拟了现实世界的场景。大量的实验和比较分析表明,我们提出的FS-RVOS和FS-RVMOS方法具有优异的性能。通过实际性能评估和稳健性研究,我们的方法始终优于现有的相关方法,在不同基准测试的指标上实现了最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Few-Shot Referring Video Single- and Multi-Object Segmentation Via Cross-Modal Affinity with Instance Sequence Matching

Referring Video Object Segmentation (RVOS) aims to segment specific objects in videos based on the provided natural language descriptions. As a new supervised visual learning task, achieving RVOS for a given scene requires a substantial amount of annotated data. However, only minimal annotations are usually available for new scenes in realistic scenarios. Another practical problem is that, apart from a single object, multiple objects of the same category coexist in the same scene. Both of these issues may significantly reduce the performance of existing RVOS methods in handling real-world applications. In this paper, we propose a simple yet effective model to address these issues by incorporating a newly designed cross-modal affinity (CMA) module based on a Transformer architecture. The CMA module facilitates the establishment of multi-modal affinity over a limited number of samples, allowing the rapid acquisition of new semantic information while fostering the model’s adaptability to diverse scenarios. Furthermore, we extend our FS-RVOS approach to multiple objects through a new instance sequence matching module over CMA, which filters out all object trajectories with similarity to language features that exceed a matching threshold, thereby achieving few-shot referring multi-object segmentation (FS-RVMOS). To foster research in this field, we establish a new dataset based on currently available datasets, which covers many scenarios in terms of single-object and multi-object data, hence effectively simulating real-world scenes. Extensive experiments and comparative analyses underscore the exceptional performance of our proposed FS-RVOS and FS-RVMOS methods. Our method consistently outperforms existing related approaches through practical performance evaluations and robustness studies, achieving optimal performance on metrics across diverse benchmark tests.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信