膜透性海藻糖6-磷酸前体喷雾在田间试验中提高小麦产量

IF 33.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cara A. Griffiths, Xiaochao Xue, Javier A. Miret, Fernando Salvagiotti, Liana G. Acevedo-Siaca, Jacinta Gimeno, Matthew P. Reynolds, Kirsty L. Hassall, Kirstie Halsey, Swati Puranik, Maria Oszvald, Smita Kurup, Benjamin G. Davis, Matthew J. Paul
{"title":"膜透性海藻糖6-磷酸前体喷雾在田间试验中提高小麦产量","authors":"Cara A. Griffiths, Xiaochao Xue, Javier A. Miret, Fernando Salvagiotti, Liana G. Acevedo-Siaca, Jacinta Gimeno, Matthew P. Reynolds, Kirsty L. Hassall, Kirstie Halsey, Swati Puranik, Maria Oszvald, Smita Kurup, Benjamin G. Davis, Matthew J. Paul","doi":"10.1038/s41587-025-02611-1","DOIUrl":null,"url":null,"abstract":"<p>Trehalose 6-phosphate (T6P) is an endogenous sugar signal in plants that promotes growth, yet it cannot be introduced directly into crops or fully genetically controlled. Here we show that wheat yields were improved using a timed microdose of a plant-permeable, sunlight-activated T6P signaling precursor, DMNB-T6P, under a variety of agricultural conditions. Under both well-watered and water-stressed conditions over 4 years, DMNB-T6P stimulated yield of three elite varieties. Yield increases were an order of magnitude larger than average annual genetic gains of breeding programs and occurred without additional water or fertilizer. Mechanistic analyses reveal that these benefits arise from increased CO<sub>2</sub> fixation and linear electron flow (‘source’) as well as from increased starchy endosperm volume, enhanced grain sieve tube development and upregulation of genes for starch, amino acid and protein synthesis (‘sink’). These data demonstrate a step-change, scalable technology with net benefit to the environment that could provide sustainable yield improvements of diverse staple cereal crops.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"66 1","pages":""},"PeriodicalIF":33.1000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Membrane-permeable trehalose 6-phosphate precursor spray increases wheat yields in field trials\",\"authors\":\"Cara A. Griffiths, Xiaochao Xue, Javier A. Miret, Fernando Salvagiotti, Liana G. Acevedo-Siaca, Jacinta Gimeno, Matthew P. Reynolds, Kirsty L. Hassall, Kirstie Halsey, Swati Puranik, Maria Oszvald, Smita Kurup, Benjamin G. Davis, Matthew J. Paul\",\"doi\":\"10.1038/s41587-025-02611-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Trehalose 6-phosphate (T6P) is an endogenous sugar signal in plants that promotes growth, yet it cannot be introduced directly into crops or fully genetically controlled. Here we show that wheat yields were improved using a timed microdose of a plant-permeable, sunlight-activated T6P signaling precursor, DMNB-T6P, under a variety of agricultural conditions. Under both well-watered and water-stressed conditions over 4 years, DMNB-T6P stimulated yield of three elite varieties. Yield increases were an order of magnitude larger than average annual genetic gains of breeding programs and occurred without additional water or fertilizer. Mechanistic analyses reveal that these benefits arise from increased CO<sub>2</sub> fixation and linear electron flow (‘source’) as well as from increased starchy endosperm volume, enhanced grain sieve tube development and upregulation of genes for starch, amino acid and protein synthesis (‘sink’). These data demonstrate a step-change, scalable technology with net benefit to the environment that could provide sustainable yield improvements of diverse staple cereal crops.</p>\",\"PeriodicalId\":19084,\"journal\":{\"name\":\"Nature biotechnology\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":33.1000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41587-025-02611-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-025-02611-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

海藻糖6-磷酸(Trehalose 6-phosphate, T6P)是植物体内一种促进生长的内源性糖信号,但它不能直接引入作物中,也不能完全通过基因控制。本研究表明,在多种农业条件下,使用定时微剂量的植物渗透性、阳光激活的T6P信号前体DMNB-T6P可以提高小麦产量。在4年多的丰水和缺水条件下,DMNB-T6P均能促进3个优质品种的产量。产量的增加比育种计划的平均年遗传收益大一个数量级,而且没有额外的水或肥料。机制分析表明,这些益处来自于二氧化碳固定和线性电子流的增加(“源”),以及淀粉胚乳体积的增加、颗粒筛管发育的增强和淀粉、氨基酸和蛋白质合成基因的上调(“汇”)。这些数据证明了一种逐步变化的、可扩展的、对环境有净效益的技术,可以为各种主要谷类作物提供可持续的产量提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Membrane-permeable trehalose 6-phosphate precursor spray increases wheat yields in field trials

Membrane-permeable trehalose 6-phosphate precursor spray increases wheat yields in field trials

Trehalose 6-phosphate (T6P) is an endogenous sugar signal in plants that promotes growth, yet it cannot be introduced directly into crops or fully genetically controlled. Here we show that wheat yields were improved using a timed microdose of a plant-permeable, sunlight-activated T6P signaling precursor, DMNB-T6P, under a variety of agricultural conditions. Under both well-watered and water-stressed conditions over 4 years, DMNB-T6P stimulated yield of three elite varieties. Yield increases were an order of magnitude larger than average annual genetic gains of breeding programs and occurred without additional water or fertilizer. Mechanistic analyses reveal that these benefits arise from increased CO2 fixation and linear electron flow (‘source’) as well as from increased starchy endosperm volume, enhanced grain sieve tube development and upregulation of genes for starch, amino acid and protein synthesis (‘sink’). These data demonstrate a step-change, scalable technology with net benefit to the environment that could provide sustainable yield improvements of diverse staple cereal crops.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature biotechnology
Nature biotechnology 工程技术-生物工程与应用微生物
CiteScore
63.00
自引率
1.70%
发文量
382
审稿时长
3 months
期刊介绍: Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research. The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field. Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology. In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信