Martin Smelik, Daniel Diaz-Roncero Gonzalez, Xiaojing An, Rakesh Heer, Lars Henningsohn, Xinxiu Li, Hui Wang, Yelin Zhao, Mikael Benson
{"title":"结合空间转录组学、伪时间和机器学习,可以发现前列腺癌的生物标志物","authors":"Martin Smelik, Daniel Diaz-Roncero Gonzalez, Xiaojing An, Rakesh Heer, Lars Henningsohn, Xinxiu Li, Hui Wang, Yelin Zhao, Mikael Benson","doi":"10.1158/0008-5472.can-25-0269","DOIUrl":null,"url":null,"abstract":"Early cancer diagnosis is crucial but challenging owing to the lack of reliable biomarkers that can be measured using routine clinical methods. The identification of biomarkers for early detection is complicated by each tumor involving changes in the interactions between thousands of genes. In addition to this staggering complexity, these interactions can vary among patients with the same diagnosis as well as within the same tumor. We hypothesized that reliable biomarkers that can be measured with routine methods could be identified by exploiting three facts: (1) the same tumor can have multiple grades of malignant transformation; (2) these grades and their molecular changes can be characterized using spatial transcriptomics; and (3) these changes can be integrated into models of malignant transformation using pseudotime. Pseudotime models were constructed based on spatial transcriptomic data from three independent prostate cancer studies to prioritize the genes that were most correlated with malignant transformation. The identified genes were associated with cancer grade, copy number aberrations, hallmark pathways, and drug targets, and they encoded candidate biomarkers for prostate cancer in mRNA, immunohistochemistry, and proteomics data from the sera, prostate tissue, and urine of more than 2,000 patients with prostate cancer and controls. Machine learning-based prediction models revealed that the biomarkers in urine had an AUC of 0.92 for prostate cancer and were associated with cancer grade. Overall, this study demonstrates the diagnostic potential of combining spatial transcriptomics, pseudotime, and machine learning for prostate cancer, which should be further tested in prospective studies.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"44 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Spatial Transcriptomics, Pseudotime, and Machine Learning Enables Discovery of Biomarkers for Prostate Cancer\",\"authors\":\"Martin Smelik, Daniel Diaz-Roncero Gonzalez, Xiaojing An, Rakesh Heer, Lars Henningsohn, Xinxiu Li, Hui Wang, Yelin Zhao, Mikael Benson\",\"doi\":\"10.1158/0008-5472.can-25-0269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early cancer diagnosis is crucial but challenging owing to the lack of reliable biomarkers that can be measured using routine clinical methods. The identification of biomarkers for early detection is complicated by each tumor involving changes in the interactions between thousands of genes. In addition to this staggering complexity, these interactions can vary among patients with the same diagnosis as well as within the same tumor. We hypothesized that reliable biomarkers that can be measured with routine methods could be identified by exploiting three facts: (1) the same tumor can have multiple grades of malignant transformation; (2) these grades and their molecular changes can be characterized using spatial transcriptomics; and (3) these changes can be integrated into models of malignant transformation using pseudotime. Pseudotime models were constructed based on spatial transcriptomic data from three independent prostate cancer studies to prioritize the genes that were most correlated with malignant transformation. The identified genes were associated with cancer grade, copy number aberrations, hallmark pathways, and drug targets, and they encoded candidate biomarkers for prostate cancer in mRNA, immunohistochemistry, and proteomics data from the sera, prostate tissue, and urine of more than 2,000 patients with prostate cancer and controls. Machine learning-based prediction models revealed that the biomarkers in urine had an AUC of 0.92 for prostate cancer and were associated with cancer grade. Overall, this study demonstrates the diagnostic potential of combining spatial transcriptomics, pseudotime, and machine learning for prostate cancer, which should be further tested in prospective studies.\",\"PeriodicalId\":9441,\"journal\":{\"name\":\"Cancer research\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/0008-5472.can-25-0269\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-25-0269","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Combining Spatial Transcriptomics, Pseudotime, and Machine Learning Enables Discovery of Biomarkers for Prostate Cancer
Early cancer diagnosis is crucial but challenging owing to the lack of reliable biomarkers that can be measured using routine clinical methods. The identification of biomarkers for early detection is complicated by each tumor involving changes in the interactions between thousands of genes. In addition to this staggering complexity, these interactions can vary among patients with the same diagnosis as well as within the same tumor. We hypothesized that reliable biomarkers that can be measured with routine methods could be identified by exploiting three facts: (1) the same tumor can have multiple grades of malignant transformation; (2) these grades and their molecular changes can be characterized using spatial transcriptomics; and (3) these changes can be integrated into models of malignant transformation using pseudotime. Pseudotime models were constructed based on spatial transcriptomic data from three independent prostate cancer studies to prioritize the genes that were most correlated with malignant transformation. The identified genes were associated with cancer grade, copy number aberrations, hallmark pathways, and drug targets, and they encoded candidate biomarkers for prostate cancer in mRNA, immunohistochemistry, and proteomics data from the sera, prostate tissue, and urine of more than 2,000 patients with prostate cancer and controls. Machine learning-based prediction models revealed that the biomarkers in urine had an AUC of 0.92 for prostate cancer and were associated with cancer grade. Overall, this study demonstrates the diagnostic potential of combining spatial transcriptomics, pseudotime, and machine learning for prostate cancer, which should be further tested in prospective studies.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.