{"title":"安全RIS- enabled ISAC的波束成形设计:被动RIS与主动RIS","authors":"Vaibhav Kumar;Marwa Chafii","doi":"10.1109/TWC.2025.3562782","DOIUrl":null,"url":null,"abstract":"The forthcoming sixth-generation (6G) communications standard is anticipated to provide integrated sensing and communication (ISAC) as a fundamental service. These ISAC systems present unique security challenges because of the exposure of information-bearing signals to sensing targets, enabling them to potentially eavesdrop on sensitive communication information with the assistance of sophisticated receivers. Recently, reconfigurable intelligent surfaces (RISs) have shown promising results in enhancing the physical layer security of various wireless communication systems, including ISAC. However, the performance of conventional passive RIS (pRIS)-enabled systems are often limited due to multiplicative fading, which can be alleviated using active RIS (aIRS). In this paper, we consider the problem of beampattern gain maximization in a secure pRIS/aRIS-enabled ISAC system, subject to signal-to-interference-plus-noise ratio constraints at communication receivers, and information leakage constraints at an eavesdropping target. For the challenging non-convex problem of joint beamforming design at the base station and the pRIS/aRIS, we propose a novel successive convex approximation (SCA)-based method. Unlike the conventional alternating optimization (AO)-based methods, in the proposed SCA-based approach, all of the optimization variables are updated simultaneously in each iteration. The proposed method shows significant performance superiority for pRIS-aided ISAC system compared to a benchmark scheme using penalty-based AO method. Moreover, our simulation results also confirm that aRIS-aided system has a notably higher beampattern gain at the target compared to that offered by the pRIS-aided system for the same power budget. We also present a detailed complexity analysis and proof of convergence for the proposed SCA-based method.","PeriodicalId":13431,"journal":{"name":"IEEE Transactions on Wireless Communications","volume":"24 9","pages":"7719-7732"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beamforming Design for Secure RIS-Enabled ISAC: Passive RIS Versus Active RIS\",\"authors\":\"Vaibhav Kumar;Marwa Chafii\",\"doi\":\"10.1109/TWC.2025.3562782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The forthcoming sixth-generation (6G) communications standard is anticipated to provide integrated sensing and communication (ISAC) as a fundamental service. These ISAC systems present unique security challenges because of the exposure of information-bearing signals to sensing targets, enabling them to potentially eavesdrop on sensitive communication information with the assistance of sophisticated receivers. Recently, reconfigurable intelligent surfaces (RISs) have shown promising results in enhancing the physical layer security of various wireless communication systems, including ISAC. However, the performance of conventional passive RIS (pRIS)-enabled systems are often limited due to multiplicative fading, which can be alleviated using active RIS (aIRS). In this paper, we consider the problem of beampattern gain maximization in a secure pRIS/aRIS-enabled ISAC system, subject to signal-to-interference-plus-noise ratio constraints at communication receivers, and information leakage constraints at an eavesdropping target. For the challenging non-convex problem of joint beamforming design at the base station and the pRIS/aRIS, we propose a novel successive convex approximation (SCA)-based method. Unlike the conventional alternating optimization (AO)-based methods, in the proposed SCA-based approach, all of the optimization variables are updated simultaneously in each iteration. The proposed method shows significant performance superiority for pRIS-aided ISAC system compared to a benchmark scheme using penalty-based AO method. Moreover, our simulation results also confirm that aRIS-aided system has a notably higher beampattern gain at the target compared to that offered by the pRIS-aided system for the same power budget. We also present a detailed complexity analysis and proof of convergence for the proposed SCA-based method.\",\"PeriodicalId\":13431,\"journal\":{\"name\":\"IEEE Transactions on Wireless Communications\",\"volume\":\"24 9\",\"pages\":\"7719-7732\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Wireless Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10979277/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Wireless Communications","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10979277/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Beamforming Design for Secure RIS-Enabled ISAC: Passive RIS Versus Active RIS
The forthcoming sixth-generation (6G) communications standard is anticipated to provide integrated sensing and communication (ISAC) as a fundamental service. These ISAC systems present unique security challenges because of the exposure of information-bearing signals to sensing targets, enabling them to potentially eavesdrop on sensitive communication information with the assistance of sophisticated receivers. Recently, reconfigurable intelligent surfaces (RISs) have shown promising results in enhancing the physical layer security of various wireless communication systems, including ISAC. However, the performance of conventional passive RIS (pRIS)-enabled systems are often limited due to multiplicative fading, which can be alleviated using active RIS (aIRS). In this paper, we consider the problem of beampattern gain maximization in a secure pRIS/aRIS-enabled ISAC system, subject to signal-to-interference-plus-noise ratio constraints at communication receivers, and information leakage constraints at an eavesdropping target. For the challenging non-convex problem of joint beamforming design at the base station and the pRIS/aRIS, we propose a novel successive convex approximation (SCA)-based method. Unlike the conventional alternating optimization (AO)-based methods, in the proposed SCA-based approach, all of the optimization variables are updated simultaneously in each iteration. The proposed method shows significant performance superiority for pRIS-aided ISAC system compared to a benchmark scheme using penalty-based AO method. Moreover, our simulation results also confirm that aRIS-aided system has a notably higher beampattern gain at the target compared to that offered by the pRIS-aided system for the same power budget. We also present a detailed complexity analysis and proof of convergence for the proposed SCA-based method.
期刊介绍:
The IEEE Transactions on Wireless Communications is a prestigious publication that showcases cutting-edge advancements in wireless communications. It welcomes both theoretical and practical contributions in various areas. The scope of the Transactions encompasses a wide range of topics, including modulation and coding, detection and estimation, propagation and channel characterization, and diversity techniques. The journal also emphasizes the physical and link layer communication aspects of network architectures and protocols.
The journal is open to papers on specific topics or non-traditional topics related to specific application areas. This includes simulation tools and methodologies, orthogonal frequency division multiplexing, MIMO systems, and wireless over optical technologies.
Overall, the IEEE Transactions on Wireless Communications serves as a platform for high-quality manuscripts that push the boundaries of wireless communications and contribute to advancements in the field.