零信任联邦学习模型市场中知识感知的隐私保护模型定制

Yanghe Pan;Zhou Su;Yuntao Wang;Han Liu;Ruidong Li;Abderrahim Benslimane
{"title":"零信任联邦学习模型市场中知识感知的隐私保护模型定制","authors":"Yanghe Pan;Zhou Su;Yuntao Wang;Han Liu;Ruidong Li;Abderrahim Benslimane","doi":"10.1109/JSAC.2025.3560010","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) model marketplaces require qualified workers to collaboratively train customized models. However, recruiting optimal workers on a limited budget in non-independent and identically distributed (non-IID) data settings remains a fundamental issue. Moreover, inadequate quality verification exposes the marketplace to spoofing and poisoning attacks, while verifying data and model quality without accessing local storage remains a significant dilemma. To bridge the research gap, this paper proposes a knowledge-aware model customization scheme in FL model marketplaces, to facilitate zero-trust worker recruitment and verification while ensuring privacy preservation. Specifically, (i) we design a knowledge-aware quality evaluation mechanism by leveraging the knowledge of workers, i.e., soft-label predictions of their local models on a privacy-free reference dataset (provided by the customer), to assess their data quality in a privacy-preserving manner. (ii) We formulate the optimal worker recruitment problem under budget constraints as an NP-hard integer programming problem and design a dynamic programming-based optimal worker recruitment algorithm with budget feasibility and computational efficiency. (iii) We devise a two-stage zero-trust quality verification mechanism by utilizing zero-knowledge proof (ZKP) to exclude distrustful workers, thereby preventing spoofing and poisoning attacks. Extensive experimental results demonstrate that the proposed scheme enhances model customization performance by up to 34.3% on label-skewed non-IID data and 36.2% on feature-skewed non-IID data compared with existing representatives.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 6","pages":"1923-1937"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge-Aware Privacy-Preserving Model Customization in Zero-Trust Federated Learning Model Marketplaces\",\"authors\":\"Yanghe Pan;Zhou Su;Yuntao Wang;Han Liu;Ruidong Li;Abderrahim Benslimane\",\"doi\":\"10.1109/JSAC.2025.3560010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL) model marketplaces require qualified workers to collaboratively train customized models. However, recruiting optimal workers on a limited budget in non-independent and identically distributed (non-IID) data settings remains a fundamental issue. Moreover, inadequate quality verification exposes the marketplace to spoofing and poisoning attacks, while verifying data and model quality without accessing local storage remains a significant dilemma. To bridge the research gap, this paper proposes a knowledge-aware model customization scheme in FL model marketplaces, to facilitate zero-trust worker recruitment and verification while ensuring privacy preservation. Specifically, (i) we design a knowledge-aware quality evaluation mechanism by leveraging the knowledge of workers, i.e., soft-label predictions of their local models on a privacy-free reference dataset (provided by the customer), to assess their data quality in a privacy-preserving manner. (ii) We formulate the optimal worker recruitment problem under budget constraints as an NP-hard integer programming problem and design a dynamic programming-based optimal worker recruitment algorithm with budget feasibility and computational efficiency. (iii) We devise a two-stage zero-trust quality verification mechanism by utilizing zero-knowledge proof (ZKP) to exclude distrustful workers, thereby preventing spoofing and poisoning attacks. Extensive experimental results demonstrate that the proposed scheme enhances model customization performance by up to 34.3% on label-skewed non-IID data and 36.2% on feature-skewed non-IID data compared with existing representatives.\",\"PeriodicalId\":73294,\"journal\":{\"name\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"volume\":\"43 6\",\"pages\":\"1923-1937\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10979248/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10979248/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

联邦学习(FL)模型市场需要合格的工作人员协作训练定制的模型。然而,在非独立和同分布(非iid)数据设置中,以有限的预算招聘最佳员工仍然是一个基本问题。此外,不充分的质量验证使市场暴露于欺骗和中毒攻击,而在不访问本地存储的情况下验证数据和模型质量仍然是一个重大的难题。为了弥补研究差距,本文提出了一种知识感知模型定制方案,用于FL模型市场,以促进零信任员工的招聘和验证,同时确保隐私保护。具体而言,(i)我们通过利用工作人员的知识设计了一个知识感知的质量评估机制,即在无隐私参考数据集(由客户提供)上对其本地模型进行软标签预测,以保护隐私的方式评估其数据质量。(ii)将预算约束下的最优工人招聘问题表述为NP-hard整数规划问题,设计了一种基于动态规划的最优工人招聘算法,该算法具有预算可行性和计算效率。(iii)我们设计了一个两阶段的零信任质量验证机制,利用零知识证明(ZKP)来排除不信任的工人,从而防止欺骗和中毒攻击。大量的实验结果表明,与现有代表相比,该方案在标签倾斜的非iid数据上的模型自定义性能提高了34.3%,在特征倾斜的非iid数据上提高了36.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge-Aware Privacy-Preserving Model Customization in Zero-Trust Federated Learning Model Marketplaces
Federated learning (FL) model marketplaces require qualified workers to collaboratively train customized models. However, recruiting optimal workers on a limited budget in non-independent and identically distributed (non-IID) data settings remains a fundamental issue. Moreover, inadequate quality verification exposes the marketplace to spoofing and poisoning attacks, while verifying data and model quality without accessing local storage remains a significant dilemma. To bridge the research gap, this paper proposes a knowledge-aware model customization scheme in FL model marketplaces, to facilitate zero-trust worker recruitment and verification while ensuring privacy preservation. Specifically, (i) we design a knowledge-aware quality evaluation mechanism by leveraging the knowledge of workers, i.e., soft-label predictions of their local models on a privacy-free reference dataset (provided by the customer), to assess their data quality in a privacy-preserving manner. (ii) We formulate the optimal worker recruitment problem under budget constraints as an NP-hard integer programming problem and design a dynamic programming-based optimal worker recruitment algorithm with budget feasibility and computational efficiency. (iii) We devise a two-stage zero-trust quality verification mechanism by utilizing zero-knowledge proof (ZKP) to exclude distrustful workers, thereby preventing spoofing and poisoning attacks. Extensive experimental results demonstrate that the proposed scheme enhances model customization performance by up to 34.3% on label-skewed non-IID data and 36.2% on feature-skewed non-IID data compared with existing representatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信