稀疏反问题的潜在EM无监督回归

IF 4.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Pierre Barbault;Matthieu Kowalski;Charles Soussen
{"title":"稀疏反问题的潜在EM无监督回归","authors":"Pierre Barbault;Matthieu Kowalski;Charles Soussen","doi":"10.1109/TSP.2025.3565018","DOIUrl":null,"url":null,"abstract":"Most methods for sparse signal recovery require setting one or several hyperparameters. We propose an unsupervised method to estimate the parameters of a Bernoulli-Gaussian (BG) model describing sparse signals. The proposed method is first derived for denoising problems using a maximum likelihood (ML) approach. Then, an extension to general inverse problems is achieved through a latent variable formulation. Two expectation-maximization (EM) algorithms are then proposed to estimate the signal together with the BG model parameters. Combining these two approaches leads to the proposed LEMUR algorithm. LEMUR is then evaluated on extensive simulations regarding the ability to recover the parameters and provide accurate sparse signal estimates.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"2087-2098"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LEMUR: Latent EM Unsupervised Regression for Sparse Inverse Problems\",\"authors\":\"Pierre Barbault;Matthieu Kowalski;Charles Soussen\",\"doi\":\"10.1109/TSP.2025.3565018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most methods for sparse signal recovery require setting one or several hyperparameters. We propose an unsupervised method to estimate the parameters of a Bernoulli-Gaussian (BG) model describing sparse signals. The proposed method is first derived for denoising problems using a maximum likelihood (ML) approach. Then, an extension to general inverse problems is achieved through a latent variable formulation. Two expectation-maximization (EM) algorithms are then proposed to estimate the signal together with the BG model parameters. Combining these two approaches leads to the proposed LEMUR algorithm. LEMUR is then evaluated on extensive simulations regarding the ability to recover the parameters and provide accurate sparse signal estimates.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"73 \",\"pages\":\"2087-2098\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10979251/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10979251/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

大多数稀疏信号恢复方法需要设置一个或多个超参数。我们提出了一种无监督方法来估计描述稀疏信号的伯努利-高斯(BG)模型的参数。提出的方法首先用于使用最大似然(ML)方法去噪问题。然后,通过隐变量公式将其推广到一般的逆问题。然后提出了两种期望最大化(EM)算法来估计信号和BG模型参数。将这两种方法结合起来,就得到了所提出的LEMUR算法。然后在大量的模拟中评估LEMUR恢复参数和提供准确的稀疏信号估计的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LEMUR: Latent EM Unsupervised Regression for Sparse Inverse Problems
Most methods for sparse signal recovery require setting one or several hyperparameters. We propose an unsupervised method to estimate the parameters of a Bernoulli-Gaussian (BG) model describing sparse signals. The proposed method is first derived for denoising problems using a maximum likelihood (ML) approach. Then, an extension to general inverse problems is achieved through a latent variable formulation. Two expectation-maximization (EM) algorithms are then proposed to estimate the signal together with the BG model parameters. Combining these two approaches leads to the proposed LEMUR algorithm. LEMUR is then evaluated on extensive simulations regarding the ability to recover the parameters and provide accurate sparse signal estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信