Chaoyang Li, Heyan Chai, Yan Jia, Ning Hu, Qing Liao
{"title":"多任务因果对比学习","authors":"Chaoyang Li, Heyan Chai, Yan Jia, Ning Hu, Qing Liao","doi":"10.1109/tnnls.2025.3555683","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"25 1","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multitask Causal Contrastive Learning\",\"authors\":\"Chaoyang Li, Heyan Chai, Yan Jia, Ning Hu, Qing Liao\",\"doi\":\"10.1109/tnnls.2025.3555683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":13303,\"journal\":{\"name\":\"IEEE transactions on neural networks and learning systems\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks and learning systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/tnnls.2025.3555683\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tnnls.2025.3555683","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
期刊介绍:
The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.