Vincenzo Palmacci, Yasmine Nahal, Matthias Welsch, Ola Engkvist, Samuel Kaski, Johannes Kirchmair
{"title":"E-GuARD:专家指导的增强对干扰生物测定的化合物的稳健检测","authors":"Vincenzo Palmacci, Yasmine Nahal, Matthias Welsch, Ola Engkvist, Samuel Kaski, Johannes Kirchmair","doi":"10.1186/s13321-025-01014-3","DOIUrl":null,"url":null,"abstract":"<p>Assay interference caused by small organic compounds continues to pose formidable challenges to early drug discovery. Various computational methods have been developed to identify compounds likely to cause assay interference. However, due to the scarcity of data available for model development, the predictive accuracy and applicability of these approaches are limited. In this work, we present E-GuARD, a novel framework seeking to address data scarcity and imbalance by integrating self-distillation, active learning, and expert-guided molecular generation. E-GuARD iteratively enriches the training data with interference-relevant molecules, resulting in quantitative structure-interference relationship (QSIR) models with superior performance. We demonstrate the utility of E-GuARD with the examples of four high-quality data sets on thiol reactivity, redox reactivity, nanoluciferase inhibition, and firefly luciferase inhibition. Our models reached MCC values of up to 0.47 for these data sets, with two-fold or higher improvements in enrichment factors compared to models trained without E-GuARD data augmentation. These results highlight the potential of E-GuARD as a scalable solution to mitigating assay interference in early drug discovery.</p><p>We present E-GuARD, an innovative framework that combines iterative self-distillation with guided molecular augmentation to enhance the predictive performance of QSAR models. By allowing models to learn from newly generated, informative compounds through iterations, E-GuARD facilitates the understanding of underrepresented structural patterns and improves performance on unseen data. When applied across different interference mechanisms, E-GuARD consistently outperformed standard approaches. E-GuARD establishes the foundation for further research into dynamic data enrichment and more robust molecular modeling.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01014-3","citationCount":"0","resultStr":"{\"title\":\"E-GuARD: expert-guided augmentation for the robust detection of compounds interfering with biological assays\",\"authors\":\"Vincenzo Palmacci, Yasmine Nahal, Matthias Welsch, Ola Engkvist, Samuel Kaski, Johannes Kirchmair\",\"doi\":\"10.1186/s13321-025-01014-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Assay interference caused by small organic compounds continues to pose formidable challenges to early drug discovery. Various computational methods have been developed to identify compounds likely to cause assay interference. However, due to the scarcity of data available for model development, the predictive accuracy and applicability of these approaches are limited. In this work, we present E-GuARD, a novel framework seeking to address data scarcity and imbalance by integrating self-distillation, active learning, and expert-guided molecular generation. E-GuARD iteratively enriches the training data with interference-relevant molecules, resulting in quantitative structure-interference relationship (QSIR) models with superior performance. We demonstrate the utility of E-GuARD with the examples of four high-quality data sets on thiol reactivity, redox reactivity, nanoluciferase inhibition, and firefly luciferase inhibition. Our models reached MCC values of up to 0.47 for these data sets, with two-fold or higher improvements in enrichment factors compared to models trained without E-GuARD data augmentation. These results highlight the potential of E-GuARD as a scalable solution to mitigating assay interference in early drug discovery.</p><p>We present E-GuARD, an innovative framework that combines iterative self-distillation with guided molecular augmentation to enhance the predictive performance of QSAR models. By allowing models to learn from newly generated, informative compounds through iterations, E-GuARD facilitates the understanding of underrepresented structural patterns and improves performance on unseen data. When applied across different interference mechanisms, E-GuARD consistently outperformed standard approaches. E-GuARD establishes the foundation for further research into dynamic data enrichment and more robust molecular modeling.</p>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01014-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01014-3\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01014-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
E-GuARD: expert-guided augmentation for the robust detection of compounds interfering with biological assays
Assay interference caused by small organic compounds continues to pose formidable challenges to early drug discovery. Various computational methods have been developed to identify compounds likely to cause assay interference. However, due to the scarcity of data available for model development, the predictive accuracy and applicability of these approaches are limited. In this work, we present E-GuARD, a novel framework seeking to address data scarcity and imbalance by integrating self-distillation, active learning, and expert-guided molecular generation. E-GuARD iteratively enriches the training data with interference-relevant molecules, resulting in quantitative structure-interference relationship (QSIR) models with superior performance. We demonstrate the utility of E-GuARD with the examples of four high-quality data sets on thiol reactivity, redox reactivity, nanoluciferase inhibition, and firefly luciferase inhibition. Our models reached MCC values of up to 0.47 for these data sets, with two-fold or higher improvements in enrichment factors compared to models trained without E-GuARD data augmentation. These results highlight the potential of E-GuARD as a scalable solution to mitigating assay interference in early drug discovery.
We present E-GuARD, an innovative framework that combines iterative self-distillation with guided molecular augmentation to enhance the predictive performance of QSAR models. By allowing models to learn from newly generated, informative compounds through iterations, E-GuARD facilitates the understanding of underrepresented structural patterns and improves performance on unseen data. When applied across different interference mechanisms, E-GuARD consistently outperformed standard approaches. E-GuARD establishes the foundation for further research into dynamic data enrichment and more robust molecular modeling.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.