富锂阴极阴离子氧化还原机理研究

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ChemNanoMat Pub Date : 2025-02-28 DOI:10.1002/cnma.202500065
Trent Seaby, Tongen Lin, Xia Huang, Lachlan Casey, Lianzhou Wang
{"title":"富锂阴极阴离子氧化还原机理研究","authors":"Trent Seaby,&nbsp;Tongen Lin,&nbsp;Xia Huang,&nbsp;Lachlan Casey,&nbsp;Lianzhou Wang","doi":"10.1002/cnma.202500065","DOIUrl":null,"url":null,"abstract":"<p>Controlling anionic redox is the crucial factor for the commercialisation of Li-Rich cathodes, being required to achieve high practical specific capacity of &gt;250 mAh/g for long-term cycling. However, the lack of generalizable understanding of the activation and anionic redox mechanisms complicates the rational design of robust Li-rich cathodes towards practical applications. We find that the physical evolution during activation is only weakly correlated with performance, with structural change seemingly triggered by low-voltage irreversible anionic redox. Structural evolution is undoubtedly important to the long-term performance of the battery; however, we find that the electronic structure at the beginning of activation (~4.5 V) is the most important parameter for reversibility. Activation at low voltages triggers large scale structural change, which can in turn trigger more irreversible oxygen oxidation in a feedback loop. Our results suggest that three most cited activation mechanisms – the Reductive Coupling mechanism, the Reversible Transition Metal Migration mechanism, and the Transition Metal Layer Nanovoids theory – all play an important role in this feedback loop. Future optimisations of Li-Rich cathodes must therefore consider the interactions between all mechanisms holistically, rather than designing around one activation mechanism exclusively.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnma.202500065","citationCount":"0","resultStr":"{\"title\":\"Investigating the Anionic Redox Mechanism of Lithium Rich Cathodes\",\"authors\":\"Trent Seaby,&nbsp;Tongen Lin,&nbsp;Xia Huang,&nbsp;Lachlan Casey,&nbsp;Lianzhou Wang\",\"doi\":\"10.1002/cnma.202500065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Controlling anionic redox is the crucial factor for the commercialisation of Li-Rich cathodes, being required to achieve high practical specific capacity of &gt;250 mAh/g for long-term cycling. However, the lack of generalizable understanding of the activation and anionic redox mechanisms complicates the rational design of robust Li-rich cathodes towards practical applications. We find that the physical evolution during activation is only weakly correlated with performance, with structural change seemingly triggered by low-voltage irreversible anionic redox. Structural evolution is undoubtedly important to the long-term performance of the battery; however, we find that the electronic structure at the beginning of activation (~4.5 V) is the most important parameter for reversibility. Activation at low voltages triggers large scale structural change, which can in turn trigger more irreversible oxygen oxidation in a feedback loop. Our results suggest that three most cited activation mechanisms – the Reductive Coupling mechanism, the Reversible Transition Metal Migration mechanism, and the Transition Metal Layer Nanovoids theory – all play an important role in this feedback loop. Future optimisations of Li-Rich cathodes must therefore consider the interactions between all mechanisms holistically, rather than designing around one activation mechanism exclusively.</p>\",\"PeriodicalId\":54339,\"journal\":{\"name\":\"ChemNanoMat\",\"volume\":\"11 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnma.202500065\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemNanoMat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202500065\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202500065","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

控制阴离子氧化还原是富锂阴极商业化的关键因素,需要实现长期循环的250毫安时/克的高实际比容量。然而,缺乏对活化和阴离子氧化还原机制的普遍理解,使得合理设计实用的富锂阴极变得复杂。我们发现活化过程中的物理演化与性能仅弱相关,结构变化似乎是由低压不可逆阴离子氧化还原触发的。结构演变无疑对电池的长期性能很重要;然而,我们发现激活开始时(~4.5 V)的电子结构是可逆性的最重要参数。在低电压下激活会引发大规模的结构变化,这反过来又会在反馈回路中引发更多不可逆的氧氧化。我们的研究结果表明,三种被引用最多的激活机制——还原耦合机制、可逆过渡金属迁移机制和过渡金属层纳米空洞理论——都在这个反馈回路中发挥了重要作用。因此,未来富锂阴极的优化必须全面考虑所有机制之间的相互作用,而不是专门围绕一种激活机制进行设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigating the Anionic Redox Mechanism of Lithium Rich Cathodes

Investigating the Anionic Redox Mechanism of Lithium Rich Cathodes

Controlling anionic redox is the crucial factor for the commercialisation of Li-Rich cathodes, being required to achieve high practical specific capacity of >250 mAh/g for long-term cycling. However, the lack of generalizable understanding of the activation and anionic redox mechanisms complicates the rational design of robust Li-rich cathodes towards practical applications. We find that the physical evolution during activation is only weakly correlated with performance, with structural change seemingly triggered by low-voltage irreversible anionic redox. Structural evolution is undoubtedly important to the long-term performance of the battery; however, we find that the electronic structure at the beginning of activation (~4.5 V) is the most important parameter for reversibility. Activation at low voltages triggers large scale structural change, which can in turn trigger more irreversible oxygen oxidation in a feedback loop. Our results suggest that three most cited activation mechanisms – the Reductive Coupling mechanism, the Reversible Transition Metal Migration mechanism, and the Transition Metal Layer Nanovoids theory – all play an important role in this feedback loop. Future optimisations of Li-Rich cathodes must therefore consider the interactions between all mechanisms holistically, rather than designing around one activation mechanism exclusively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信