Chae Yeon Kim, Chae Rim Kim, Eungyung Kim, Kanghyun Park, Hyeonjin Kim, Lei Ma, Ke Huang, Zhibin Liu, Junsu Park, Minwoong Jung, Shengqing Li, Weihong Wen, Sangsik Kim, Sijun Park, Zae Young Ryoo, Junkoo Yi, Myoung Ok Kim
{"title":"猪场暴露PM2.5金属成分对小鼠精子功能的影响","authors":"Chae Yeon Kim, Chae Rim Kim, Eungyung Kim, Kanghyun Park, Hyeonjin Kim, Lei Ma, Ke Huang, Zhibin Liu, Junsu Park, Minwoong Jung, Shengqing Li, Weihong Wen, Sangsik Kim, Sijun Park, Zae Young Ryoo, Junkoo Yi, Myoung Ok Kim","doi":"10.1002/jbt.70279","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to identify the effects of major metal components present in particulate matter (PM)2.5 on the reproductive system, sperm function, and embryo development. Through intratracheal instillation, male mice were exposed to various concentrations of metal components, including calcium oxide (Ca), iron oxide (Fe), aluminum oxide (Al), zinc oxide (Zn), lead oxide (Pb), and a mixture of these metals, in PM2.5 collected from the porcine farm. After 14 days, testicular inflammation and abnormal sperm morphology were observed in the exposed mice. These results indicate that such metal exposure enhances inflammatory cytokines in the testis and oxidative stress-induced apoptosis. Moreover, the exposure influenced sperm deformation, capacitation status, testosterone levels, and testosterone biosynthesis. Importantly, embryo development was also found to be impacted due to decreased sperm fertility. This study demonstrates that major metal components of PM2.5 derived from porcine farm pose adverse effects on the male reproductive system.</p>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbt.70279","citationCount":"0","resultStr":"{\"title\":\"Effects of PM2.5 Metal Components Derived From Porcine Farm Exposure on Sperm Function in Mice\",\"authors\":\"Chae Yeon Kim, Chae Rim Kim, Eungyung Kim, Kanghyun Park, Hyeonjin Kim, Lei Ma, Ke Huang, Zhibin Liu, Junsu Park, Minwoong Jung, Shengqing Li, Weihong Wen, Sangsik Kim, Sijun Park, Zae Young Ryoo, Junkoo Yi, Myoung Ok Kim\",\"doi\":\"10.1002/jbt.70279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aimed to identify the effects of major metal components present in particulate matter (PM)2.5 on the reproductive system, sperm function, and embryo development. Through intratracheal instillation, male mice were exposed to various concentrations of metal components, including calcium oxide (Ca), iron oxide (Fe), aluminum oxide (Al), zinc oxide (Zn), lead oxide (Pb), and a mixture of these metals, in PM2.5 collected from the porcine farm. After 14 days, testicular inflammation and abnormal sperm morphology were observed in the exposed mice. These results indicate that such metal exposure enhances inflammatory cytokines in the testis and oxidative stress-induced apoptosis. Moreover, the exposure influenced sperm deformation, capacitation status, testosterone levels, and testosterone biosynthesis. Importantly, embryo development was also found to be impacted due to decreased sperm fertility. This study demonstrates that major metal components of PM2.5 derived from porcine farm pose adverse effects on the male reproductive system.</p>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"39 5\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbt.70279\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70279\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70279","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effects of PM2.5 Metal Components Derived From Porcine Farm Exposure on Sperm Function in Mice
This study aimed to identify the effects of major metal components present in particulate matter (PM)2.5 on the reproductive system, sperm function, and embryo development. Through intratracheal instillation, male mice were exposed to various concentrations of metal components, including calcium oxide (Ca), iron oxide (Fe), aluminum oxide (Al), zinc oxide (Zn), lead oxide (Pb), and a mixture of these metals, in PM2.5 collected from the porcine farm. After 14 days, testicular inflammation and abnormal sperm morphology were observed in the exposed mice. These results indicate that such metal exposure enhances inflammatory cytokines in the testis and oxidative stress-induced apoptosis. Moreover, the exposure influenced sperm deformation, capacitation status, testosterone levels, and testosterone biosynthesis. Importantly, embryo development was also found to be impacted due to decreased sperm fertility. This study demonstrates that major metal components of PM2.5 derived from porcine farm pose adverse effects on the male reproductive system.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.