Weil束的可度量性和动力学

IF 0.9 Q2 MATHEMATICS
Stephane Tchuiaga, Moussa Koivogui, Fidèle Balibuno
{"title":"Weil束的可度量性和动力学","authors":"Stephane Tchuiaga,&nbsp;Moussa Koivogui,&nbsp;Fidèle Balibuno","doi":"10.1007/s13370-025-01309-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper bridges synthetic and classical differential geometry by investigating the metrizability and dynamics of Weil bundles. For a smooth, compact manifold <span>\\(M\\)</span> and a Weil algebra <span>\\(\\textbf{A}\\)</span>, we prove that the manifold <span>\\(M^\\textbf{A}\\)</span> of <span>\\(\\textbf{A}\\)</span>-points admits a canonical, weighted metric <span>\\(\\mathfrak {d}_w\\)</span> that encodes both base-manifold geometry and infinitesimal deformations. Our approach relies on constructions and methods of local and global analysis. Key results include: (1). Metrization: <span>\\(\\mathfrak {d}_w\\)</span> induces a complete metric topology on <span>\\(M^\\textbf{A}\\)</span>. (2). Path Lifting: Curves lift from <span>\\(M\\)</span> to <span>\\(M^\\textbf{A}\\)</span> while preserving topological invariants. (3). Dynamics: Fixed-point theorems for diffeomorphisms on <span>\\(M^\\textbf{A}\\)</span> connected to stability analysis. (4). Topological Equivalence: <span>\\(H^*(M^\\textbf{A}) \\cong H^*(M)\\)</span> and <span>\\(\\pi _*(M^\\textbf{A}) \\cong \\pi _*(M)\\)</span>.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metrizability and dynamics of Weil bundles\",\"authors\":\"Stephane Tchuiaga,&nbsp;Moussa Koivogui,&nbsp;Fidèle Balibuno\",\"doi\":\"10.1007/s13370-025-01309-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper bridges synthetic and classical differential geometry by investigating the metrizability and dynamics of Weil bundles. For a smooth, compact manifold <span>\\\\(M\\\\)</span> and a Weil algebra <span>\\\\(\\\\textbf{A}\\\\)</span>, we prove that the manifold <span>\\\\(M^\\\\textbf{A}\\\\)</span> of <span>\\\\(\\\\textbf{A}\\\\)</span>-points admits a canonical, weighted metric <span>\\\\(\\\\mathfrak {d}_w\\\\)</span> that encodes both base-manifold geometry and infinitesimal deformations. Our approach relies on constructions and methods of local and global analysis. Key results include: (1). Metrization: <span>\\\\(\\\\mathfrak {d}_w\\\\)</span> induces a complete metric topology on <span>\\\\(M^\\\\textbf{A}\\\\)</span>. (2). Path Lifting: Curves lift from <span>\\\\(M\\\\)</span> to <span>\\\\(M^\\\\textbf{A}\\\\)</span> while preserving topological invariants. (3). Dynamics: Fixed-point theorems for diffeomorphisms on <span>\\\\(M^\\\\textbf{A}\\\\)</span> connected to stability analysis. (4). Topological Equivalence: <span>\\\\(H^*(M^\\\\textbf{A}) \\\\cong H^*(M)\\\\)</span> and <span>\\\\(\\\\pi _*(M^\\\\textbf{A}) \\\\cong \\\\pi _*(M)\\\\)</span>.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01309-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01309-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文通过研究Weil束的度量性和动力学,架起了综合几何与经典微分几何的桥梁。对于光滑紧流形\(M\)和Weil代数\(\textbf{A}\),我们证明了\(\textbf{A}\) -点的流形\(M^\textbf{A}\)承认一个规范的加权度量\(\mathfrak {d}_w\),它编码基流形几何和无穷小变形。我们的方法依赖于本地和全球分析的结构和方法。关键结果包括:(1).度量化:\(\mathfrak {d}_w\)在\(M^\textbf{A}\)上推导出一个完整的度量拓扑。(2)路径提升:曲线从\(M\)提升到\(M^\textbf{A}\),同时保持拓扑不变量。(3).动力学:\(M^\textbf{A}\)上与稳定性分析相关的微分同态的不动点定理。(4).拓扑等价:\(H^*(M^\textbf{A}) \cong H^*(M)\)和\(\pi _*(M^\textbf{A}) \cong \pi _*(M)\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metrizability and dynamics of Weil bundles

This paper bridges synthetic and classical differential geometry by investigating the metrizability and dynamics of Weil bundles. For a smooth, compact manifold \(M\) and a Weil algebra \(\textbf{A}\), we prove that the manifold \(M^\textbf{A}\) of \(\textbf{A}\)-points admits a canonical, weighted metric \(\mathfrak {d}_w\) that encodes both base-manifold geometry and infinitesimal deformations. Our approach relies on constructions and methods of local and global analysis. Key results include: (1). Metrization: \(\mathfrak {d}_w\) induces a complete metric topology on \(M^\textbf{A}\). (2). Path Lifting: Curves lift from \(M\) to \(M^\textbf{A}\) while preserving topological invariants. (3). Dynamics: Fixed-point theorems for diffeomorphisms on \(M^\textbf{A}\) connected to stability analysis. (4). Topological Equivalence: \(H^*(M^\textbf{A}) \cong H^*(M)\) and \(\pi _*(M^\textbf{A}) \cong \pi _*(M)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信