LiteSpiralGCN:基于螺旋图卷积的轻量级3D手部网格重建

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yiteng Wang, Minqi Li, Kaibing Zhang, Xiangjian He
{"title":"LiteSpiralGCN:基于螺旋图卷积的轻量级3D手部网格重建","authors":"Yiteng Wang,&nbsp;Minqi Li,&nbsp;Kaibing Zhang,&nbsp;Xiangjian He","doi":"10.1007/s10489-025-06585-0","DOIUrl":null,"url":null,"abstract":"<div><p>Hand mesh reconstruction technologies play an important role in computer vision, as they facilitate many applications including virtual/augmented reality, human-computer interaction, etc. However, current methods typically rely on computationally intensive architectures with excessive parameters and storage demands to achieve accuracy. In this paper, we propose a lightweight network via Spiral GCN balancing accuracy and efficiency, named LiteSpiralGCN. Our approach includes an Attention Sampling (AS) module to enhance keypoint feature interactions, a SpiralGCN module for efficient and flexible decoding, and a refinement method that leverages multi-scale and multi-stage information to boost reconstruction accuracy. Experiments conducted on benchmark datasets demonstrate that LiteSpiralGCN effectively balances parameter scale and reconstruction accuracy. Specifically, on the FreiHAND dataset, LiteSpiralGCN achieves a PA-MPJPE of 6.5 mm and a PA-MPVPE of 6.6 mm using only 9.77M parameters. Our code is publicly available at: https://github.com/minqili/LiteSpiralGCN.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LiteSpiralGCN: Lightweight 3D hand mesh reconstruction via spiral graph convolution\",\"authors\":\"Yiteng Wang,&nbsp;Minqi Li,&nbsp;Kaibing Zhang,&nbsp;Xiangjian He\",\"doi\":\"10.1007/s10489-025-06585-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hand mesh reconstruction technologies play an important role in computer vision, as they facilitate many applications including virtual/augmented reality, human-computer interaction, etc. However, current methods typically rely on computationally intensive architectures with excessive parameters and storage demands to achieve accuracy. In this paper, we propose a lightweight network via Spiral GCN balancing accuracy and efficiency, named LiteSpiralGCN. Our approach includes an Attention Sampling (AS) module to enhance keypoint feature interactions, a SpiralGCN module for efficient and flexible decoding, and a refinement method that leverages multi-scale and multi-stage information to boost reconstruction accuracy. Experiments conducted on benchmark datasets demonstrate that LiteSpiralGCN effectively balances parameter scale and reconstruction accuracy. Specifically, on the FreiHAND dataset, LiteSpiralGCN achieves a PA-MPJPE of 6.5 mm and a PA-MPVPE of 6.6 mm using only 9.77M parameters. Our code is publicly available at: https://github.com/minqili/LiteSpiralGCN.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 10\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06585-0\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06585-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

手工网格重建技术在计算机视觉中起着重要的作用,因为它促进了许多应用,包括虚拟/增强现实,人机交互等。然而,目前的方法通常依赖于具有过多参数和存储需求的计算密集型架构来实现准确性。在本文中,我们提出了一种通过螺旋GCN平衡精度和效率的轻量级网络,命名为LiteSpiralGCN。我们的方法包括一个注意力采样(Attention Sampling, AS)模块来增强关键点特征的交互,一个SpiralGCN模块来实现高效灵活的解码,以及一个利用多尺度和多阶段信息来提高重建精度的改进方法。在基准数据集上进行的实验表明,LiteSpiralGCN有效地平衡了参数尺度和重建精度。具体来说,在FreiHAND数据集上,LiteSpiralGCN仅使用9.77M参数就实现了6.5 mm的PA-MPJPE和6.6 mm的PA-MPVPE。我们的代码可以在https://github.com/minqili/LiteSpiralGCN上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LiteSpiralGCN: Lightweight 3D hand mesh reconstruction via spiral graph convolution

Hand mesh reconstruction technologies play an important role in computer vision, as they facilitate many applications including virtual/augmented reality, human-computer interaction, etc. However, current methods typically rely on computationally intensive architectures with excessive parameters and storage demands to achieve accuracy. In this paper, we propose a lightweight network via Spiral GCN balancing accuracy and efficiency, named LiteSpiralGCN. Our approach includes an Attention Sampling (AS) module to enhance keypoint feature interactions, a SpiralGCN module for efficient and flexible decoding, and a refinement method that leverages multi-scale and multi-stage information to boost reconstruction accuracy. Experiments conducted on benchmark datasets demonstrate that LiteSpiralGCN effectively balances parameter scale and reconstruction accuracy. Specifically, on the FreiHAND dataset, LiteSpiralGCN achieves a PA-MPJPE of 6.5 mm and a PA-MPVPE of 6.6 mm using only 9.77M parameters. Our code is publicly available at: https://github.com/minqili/LiteSpiralGCN.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信