{"title":"ESLiteU²-Net:一种用于高分辨率遥感影像道路提取的轻量级U²-Net","authors":"Rui Xu;Zhenxing Zhuang;Renzhong Mao;Yihui Yang","doi":"10.1109/ACCESS.2025.3563459","DOIUrl":null,"url":null,"abstract":"Extracting road information from high-resolution remote sensing images has become a research hotspot in remote sensing image processing due to its cost-effectiveness and efficiency. Current road extraction methods generally face challenges such as large parameter sizes and limited accuracy when dealing with roads at different scales. To overcome these limitations, this study proposes a novel lightweight attention network model (ESLiteU2-Net) to improve both efficiency and accuracy of road extraction. Based on U2-Net, the proposed model reduces complexity by a channel reduction strategy and introduces an Efficient Spatial and Channel Attention Module (ESCA). This innovative design enables the model to better capture and reinforce road features across both spatial and channel dimensions, resulting in significant improvements in extraction accuracy and robustness while maintaining a lightweight structure. Experimental results demonstrate that ESLiteU2-Net outperforms existing methods on the CHN6-CUG and Massachusetts road datasets. Compared to U2-Net, the proposed model not only achieves superior accuracy but also reduces computational load and parameter number by 30.98% and 81.91%, respectively, achieving a balanced combination of lightweight design, efficiency, and accuracy for road extraction.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"71223-71239"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10975038","citationCount":"0","resultStr":"{\"title\":\"ESLiteU²-Net: A Lightweight U²-Net for Road Extraction From High-Resolution Remote Sensing Images\",\"authors\":\"Rui Xu;Zhenxing Zhuang;Renzhong Mao;Yihui Yang\",\"doi\":\"10.1109/ACCESS.2025.3563459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracting road information from high-resolution remote sensing images has become a research hotspot in remote sensing image processing due to its cost-effectiveness and efficiency. Current road extraction methods generally face challenges such as large parameter sizes and limited accuracy when dealing with roads at different scales. To overcome these limitations, this study proposes a novel lightweight attention network model (ESLiteU2-Net) to improve both efficiency and accuracy of road extraction. Based on U2-Net, the proposed model reduces complexity by a channel reduction strategy and introduces an Efficient Spatial and Channel Attention Module (ESCA). This innovative design enables the model to better capture and reinforce road features across both spatial and channel dimensions, resulting in significant improvements in extraction accuracy and robustness while maintaining a lightweight structure. Experimental results demonstrate that ESLiteU2-Net outperforms existing methods on the CHN6-CUG and Massachusetts road datasets. Compared to U2-Net, the proposed model not only achieves superior accuracy but also reduces computational load and parameter number by 30.98% and 81.91%, respectively, achieving a balanced combination of lightweight design, efficiency, and accuracy for road extraction.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"71223-71239\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10975038\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10975038/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10975038/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
ESLiteU²-Net: A Lightweight U²-Net for Road Extraction From High-Resolution Remote Sensing Images
Extracting road information from high-resolution remote sensing images has become a research hotspot in remote sensing image processing due to its cost-effectiveness and efficiency. Current road extraction methods generally face challenges such as large parameter sizes and limited accuracy when dealing with roads at different scales. To overcome these limitations, this study proposes a novel lightweight attention network model (ESLiteU2-Net) to improve both efficiency and accuracy of road extraction. Based on U2-Net, the proposed model reduces complexity by a channel reduction strategy and introduces an Efficient Spatial and Channel Attention Module (ESCA). This innovative design enables the model to better capture and reinforce road features across both spatial and channel dimensions, resulting in significant improvements in extraction accuracy and robustness while maintaining a lightweight structure. Experimental results demonstrate that ESLiteU2-Net outperforms existing methods on the CHN6-CUG and Massachusetts road datasets. Compared to U2-Net, the proposed model not only achieves superior accuracy but also reduces computational load and parameter number by 30.98% and 81.91%, respectively, achieving a balanced combination of lightweight design, efficiency, and accuracy for road extraction.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.