一种新型差分变量输入忆阻器调制超混沌映射的设计

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Beining Fu , Qiankun Sun , Huihai Wang , Kehui Sun
{"title":"一种新型差分变量输入忆阻器调制超混沌映射的设计","authors":"Beining Fu ,&nbsp;Qiankun Sun ,&nbsp;Huihai Wang ,&nbsp;Kehui Sun","doi":"10.1016/j.chaos.2025.116474","DOIUrl":null,"url":null,"abstract":"<div><div>Chaos performance enhancement techniques have emerged as one of the pivotal research focal points in the realm of nonlinear physics. By inputting the differences of state variables into the seed fraction map (FM) and coupling it with a discrete memristor, a novel state variable difference input memristive fraction map (DMFM) is constructed in this paper. The presence of infinite fixed points unveils the multi-stability of DMFM, and simulation experiments demonstrate the coexistence of multiple attractors, highlighting the high sensitivity to initial conditions. Bifurcation diagrams reveal the reduction of the number of periodic windows for the seed map after difference input and memristor modulation. The hyperchaotic state within certain parameter ranges is verified by the Lyapunov exponent spectrum. Moreover, the broadening of the chaos interval further substantiates that the use of state variable difference input and the modulation of memristor effectively enhance the chaotic performance. The initial-boosting behavior of DMFM exhibits complex dynamics. Regarding practical applications, a pseudo-random number generator based on DMFM is designed and successfully passed the TestU01 and NIST SP800-22 tests. The digital signal processing (DSP) implementation of the system lays an experimental foundation for its application.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"197 ","pages":"Article 116474"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a novel memristor-modulated hyperchaotic map with differential variable input\",\"authors\":\"Beining Fu ,&nbsp;Qiankun Sun ,&nbsp;Huihai Wang ,&nbsp;Kehui Sun\",\"doi\":\"10.1016/j.chaos.2025.116474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chaos performance enhancement techniques have emerged as one of the pivotal research focal points in the realm of nonlinear physics. By inputting the differences of state variables into the seed fraction map (FM) and coupling it with a discrete memristor, a novel state variable difference input memristive fraction map (DMFM) is constructed in this paper. The presence of infinite fixed points unveils the multi-stability of DMFM, and simulation experiments demonstrate the coexistence of multiple attractors, highlighting the high sensitivity to initial conditions. Bifurcation diagrams reveal the reduction of the number of periodic windows for the seed map after difference input and memristor modulation. The hyperchaotic state within certain parameter ranges is verified by the Lyapunov exponent spectrum. Moreover, the broadening of the chaos interval further substantiates that the use of state variable difference input and the modulation of memristor effectively enhance the chaotic performance. The initial-boosting behavior of DMFM exhibits complex dynamics. Regarding practical applications, a pseudo-random number generator based on DMFM is designed and successfully passed the TestU01 and NIST SP800-22 tests. The digital signal processing (DSP) implementation of the system lays an experimental foundation for its application.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"197 \",\"pages\":\"Article 116474\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925004874\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925004874","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

混沌性能增强技术已成为非线性物理领域的关键研究热点之一。将状态变量差分输入到种子分数映射(FM)中,并与离散忆阻器耦合,构造了一种新的状态变量差分输入忆阻分数映射(DMFM)。无限不动点的存在揭示了DMFM的多重稳定性,仿真实验证明了多个吸引子的共存,突出了对初始条件的高灵敏度。分岔图揭示了差分输入和忆阻器调制后种子图的周期窗口数的减少。用李雅普诺夫指数谱验证了在一定参数范围内的超混沌状态。此外,混沌区间的扩大进一步证实了状态变量差分输入和忆阻器调制的使用有效地提高了混沌性能。DMFM的初始增压行为表现出复杂的动力学特性。在实际应用中,设计了基于DMFM的伪随机数发生器,并成功通过了TestU01和NIST SP800-22测试。该系统的数字信号处理(DSP)实现为其应用奠定了实验基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a novel memristor-modulated hyperchaotic map with differential variable input
Chaos performance enhancement techniques have emerged as one of the pivotal research focal points in the realm of nonlinear physics. By inputting the differences of state variables into the seed fraction map (FM) and coupling it with a discrete memristor, a novel state variable difference input memristive fraction map (DMFM) is constructed in this paper. The presence of infinite fixed points unveils the multi-stability of DMFM, and simulation experiments demonstrate the coexistence of multiple attractors, highlighting the high sensitivity to initial conditions. Bifurcation diagrams reveal the reduction of the number of periodic windows for the seed map after difference input and memristor modulation. The hyperchaotic state within certain parameter ranges is verified by the Lyapunov exponent spectrum. Moreover, the broadening of the chaos interval further substantiates that the use of state variable difference input and the modulation of memristor effectively enhance the chaotic performance. The initial-boosting behavior of DMFM exhibits complex dynamics. Regarding practical applications, a pseudo-random number generator based on DMFM is designed and successfully passed the TestU01 and NIST SP800-22 tests. The digital signal processing (DSP) implementation of the system lays an experimental foundation for its application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信