高稳定性Ti3C2Tx MXene的氧主导官能团的光致发光和pH敏感性增强

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sheetal Sharma , Manoj Kumar Gupta , Vinod Kumar Singh
{"title":"高稳定性Ti3C2Tx MXene的氧主导官能团的光致发光和pH敏感性增强","authors":"Sheetal Sharma ,&nbsp;Manoj Kumar Gupta ,&nbsp;Vinod Kumar Singh","doi":"10.1016/j.matchemphys.2025.130874","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal carbides, commonly known as MXenes, represent a promising family of two-dimensional nanomaterials characterized by diverse surface functional groups that vary with the synthesis method. This study investigates the enhanced luminescence of MXene nanosheets, increasing photoluminescence intensity due to improved charge transfer, and the influence of pH on the photoluminescence excitation spectrum of <span><math><mrow><msub><mrow><mi>Ti</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></math></span> MXene, which features oxygen-dominated functional groups. The <span><math><mrow><msub><mrow><mi>Ti</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></math></span> MXene was well-synthesized using hydrofluoric acid (HF), as confirmed with X-ray diffraction analysis, which revealed the hexagonal structure of <span><math><mrow><msub><mrow><mi>Ti</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></math></span> with a crystallite size of 3.8 nm, while electron microscopy images illustrated its distinct layered morphology with the inter-layer spacing of 1.13 nm which reveals good flexibility and tensile strength of the MXene. Photoluminescence studies demonstrated significant light emission with enhanced photoluminescence intensity with varying excitation wavelength in the blue–green region, spanning from 400 nm to 690 nm. Notably, pH-dependent photoluminescence analysis indicated a decrease in excitation intensity at pH 2, suggesting a loss of the material’s intrinsic properties under acidic conditions. Furthermore, cyclic voltammetry and zeta potential reveal outstanding stability of MXene over time. The electrical measurement reveals the semiconducting nature of <span><math><mrow><msub><mrow><mi>Ti</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></math></span>, which is evident from its band gap. This research highlights the critical role of pH in modulating the optical properties of <span><math><mrow><msub><mrow><mi>Ti</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></math></span> MXene, paving the way for potential applications in optoelectronic devices and sensors.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"341 ","pages":"Article 130874"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced photoluminescence emission and pH sensitivity in oxygen-dominated functional group of highly stable Ti3C2Tx MXene\",\"authors\":\"Sheetal Sharma ,&nbsp;Manoj Kumar Gupta ,&nbsp;Vinod Kumar Singh\",\"doi\":\"10.1016/j.matchemphys.2025.130874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Transition metal carbides, commonly known as MXenes, represent a promising family of two-dimensional nanomaterials characterized by diverse surface functional groups that vary with the synthesis method. This study investigates the enhanced luminescence of MXene nanosheets, increasing photoluminescence intensity due to improved charge transfer, and the influence of pH on the photoluminescence excitation spectrum of <span><math><mrow><msub><mrow><mi>Ti</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></math></span> MXene, which features oxygen-dominated functional groups. The <span><math><mrow><msub><mrow><mi>Ti</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></math></span> MXene was well-synthesized using hydrofluoric acid (HF), as confirmed with X-ray diffraction analysis, which revealed the hexagonal structure of <span><math><mrow><msub><mrow><mi>Ti</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></math></span> with a crystallite size of 3.8 nm, while electron microscopy images illustrated its distinct layered morphology with the inter-layer spacing of 1.13 nm which reveals good flexibility and tensile strength of the MXene. Photoluminescence studies demonstrated significant light emission with enhanced photoluminescence intensity with varying excitation wavelength in the blue–green region, spanning from 400 nm to 690 nm. Notably, pH-dependent photoluminescence analysis indicated a decrease in excitation intensity at pH 2, suggesting a loss of the material’s intrinsic properties under acidic conditions. Furthermore, cyclic voltammetry and zeta potential reveal outstanding stability of MXene over time. The electrical measurement reveals the semiconducting nature of <span><math><mrow><msub><mrow><mi>Ti</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></math></span>, which is evident from its band gap. This research highlights the critical role of pH in modulating the optical properties of <span><math><mrow><msub><mrow><mi>Ti</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></math></span> MXene, paving the way for potential applications in optoelectronic devices and sensors.</div></div>\",\"PeriodicalId\":18227,\"journal\":{\"name\":\"Materials Chemistry and Physics\",\"volume\":\"341 \",\"pages\":\"Article 130874\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry and Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254058425005206\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425005206","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属碳化物,通常被称为MXenes,代表了一个有前途的二维纳米材料家族,其特征是不同的合成方法不同的表面官能团。本研究研究了MXene纳米片的发光增强,由于电荷转移的改善而增加了光致发光强度,以及pH对具有氧主导官能团的Ti3C2Tx MXene的光致发光激发光谱的影响。用氢氟酸(HF)合成了Ti3C2Tx MXene, x射线衍射分析证实,Ti3C2Tx为六方结构,晶粒尺寸为3.8 nm,电镜图像显示其层状结构清晰,层间间距为1.13 nm,显示出良好的柔韧性和抗拉强度。光致发光研究表明,在蓝绿色区域,随着激发波长的变化,光致发光强度增强,发光强度在400 nm到690 nm之间。值得注意的是,pH依赖的光致发光分析表明,在pH 2时激发强度降低,表明在酸性条件下材料的固有性质丧失。此外,循环伏安法和zeta电位显示了MXene随时间的稳定性。电学测量揭示了Ti3C2Tx的半导体性质,这从其带隙中可以明显看出。该研究强调了pH在调制Ti3C2Tx MXene光学特性中的关键作用,为光电器件和传感器的潜在应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced photoluminescence emission and pH sensitivity in oxygen-dominated functional group of highly stable Ti3C2Tx MXene

Enhanced photoluminescence emission and pH sensitivity in oxygen-dominated functional group of highly stable Ti3C2Tx MXene
Transition metal carbides, commonly known as MXenes, represent a promising family of two-dimensional nanomaterials characterized by diverse surface functional groups that vary with the synthesis method. This study investigates the enhanced luminescence of MXene nanosheets, increasing photoluminescence intensity due to improved charge transfer, and the influence of pH on the photoluminescence excitation spectrum of Ti3C2Tx MXene, which features oxygen-dominated functional groups. The Ti3C2Tx MXene was well-synthesized using hydrofluoric acid (HF), as confirmed with X-ray diffraction analysis, which revealed the hexagonal structure of Ti3C2Tx with a crystallite size of 3.8 nm, while electron microscopy images illustrated its distinct layered morphology with the inter-layer spacing of 1.13 nm which reveals good flexibility and tensile strength of the MXene. Photoluminescence studies demonstrated significant light emission with enhanced photoluminescence intensity with varying excitation wavelength in the blue–green region, spanning from 400 nm to 690 nm. Notably, pH-dependent photoluminescence analysis indicated a decrease in excitation intensity at pH 2, suggesting a loss of the material’s intrinsic properties under acidic conditions. Furthermore, cyclic voltammetry and zeta potential reveal outstanding stability of MXene over time. The electrical measurement reveals the semiconducting nature of Ti3C2Tx, which is evident from its band gap. This research highlights the critical role of pH in modulating the optical properties of Ti3C2Tx MXene, paving the way for potential applications in optoelectronic devices and sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信