Obed A. Aning , Albertas Dvirnas , My Nyblom , Jens Krog , Johanna Carlson , Pegah Johansson , Tobias Ambjörnsson , Fredrik Westerlund
{"title":"染色DNA点检测(SD3):一种自动化工具,用于定量沿单个拉伸DNA分子的荧光特征","authors":"Obed A. Aning , Albertas Dvirnas , My Nyblom , Jens Krog , Johanna Carlson , Pegah Johansson , Tobias Ambjörnsson , Fredrik Westerlund","doi":"10.1016/j.dnarep.2025.103836","DOIUrl":null,"url":null,"abstract":"<div><div>The main information in DNA is its four-letter sequence that builds up the genetic information and that is traditionally read using sequencing methodologies. DNA can, however, also carry other important information, such as epigenetic marks and DNA damage. This information has recently been visualized along single DNA molecules using fluorescent labels. Quantifying fluorescent labels along DNA is done by counting the number of “dots” per length of each DNA molecule on DNA stretched on a glass surface. So far, a major challenge has been the lack of standardized data analysis tools. Focusing on DNA damage, we here present a Matlab-based automated software, Stained DNA Dot Detection (SD<sup>3</sup>), which uses a robust method for finding DNA molecules and estimating the number of dots along each molecule. We have validated SD<sup>3</sup> by comparing the outcome to manual analysis using DNA extracted from cells exposed to H<sub>2</sub>O<sub>2</sub> as a model system. Our results show that SD<sup>3</sup> achieves high accuracy and reduced analysis time relative to manual counting. SD<sup>3</sup> allows the user to define specific parameters regarding the DNA molecule and the location of dots to include during analysis via a user-friendly interface. We foresee that our open-source software can have broad use in the analysis of single DNA molecules and their modifications in research and in diagnostics.</div></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"149 ","pages":"Article 103836"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stained DNA Dot Detection (SD3): An automated tool for quantifying fluorescent features along single stretched DNA molecules\",\"authors\":\"Obed A. Aning , Albertas Dvirnas , My Nyblom , Jens Krog , Johanna Carlson , Pegah Johansson , Tobias Ambjörnsson , Fredrik Westerlund\",\"doi\":\"10.1016/j.dnarep.2025.103836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The main information in DNA is its four-letter sequence that builds up the genetic information and that is traditionally read using sequencing methodologies. DNA can, however, also carry other important information, such as epigenetic marks and DNA damage. This information has recently been visualized along single DNA molecules using fluorescent labels. Quantifying fluorescent labels along DNA is done by counting the number of “dots” per length of each DNA molecule on DNA stretched on a glass surface. So far, a major challenge has been the lack of standardized data analysis tools. Focusing on DNA damage, we here present a Matlab-based automated software, Stained DNA Dot Detection (SD<sup>3</sup>), which uses a robust method for finding DNA molecules and estimating the number of dots along each molecule. We have validated SD<sup>3</sup> by comparing the outcome to manual analysis using DNA extracted from cells exposed to H<sub>2</sub>O<sub>2</sub> as a model system. Our results show that SD<sup>3</sup> achieves high accuracy and reduced analysis time relative to manual counting. SD<sup>3</sup> allows the user to define specific parameters regarding the DNA molecule and the location of dots to include during analysis via a user-friendly interface. We foresee that our open-source software can have broad use in the analysis of single DNA molecules and their modifications in research and in diagnostics.</div></div>\",\"PeriodicalId\":300,\"journal\":{\"name\":\"DNA Repair\",\"volume\":\"149 \",\"pages\":\"Article 103836\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Repair\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568786425000321\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786425000321","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Stained DNA Dot Detection (SD3): An automated tool for quantifying fluorescent features along single stretched DNA molecules
The main information in DNA is its four-letter sequence that builds up the genetic information and that is traditionally read using sequencing methodologies. DNA can, however, also carry other important information, such as epigenetic marks and DNA damage. This information has recently been visualized along single DNA molecules using fluorescent labels. Quantifying fluorescent labels along DNA is done by counting the number of “dots” per length of each DNA molecule on DNA stretched on a glass surface. So far, a major challenge has been the lack of standardized data analysis tools. Focusing on DNA damage, we here present a Matlab-based automated software, Stained DNA Dot Detection (SD3), which uses a robust method for finding DNA molecules and estimating the number of dots along each molecule. We have validated SD3 by comparing the outcome to manual analysis using DNA extracted from cells exposed to H2O2 as a model system. Our results show that SD3 achieves high accuracy and reduced analysis time relative to manual counting. SD3 allows the user to define specific parameters regarding the DNA molecule and the location of dots to include during analysis via a user-friendly interface. We foresee that our open-source software can have broad use in the analysis of single DNA molecules and their modifications in research and in diagnostics.
期刊介绍:
DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease.
DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.