{"title":"基于网络流量异常分析的无线网络入侵检测算法","authors":"Xiangqian Nie, Jiao Xing, Qimeng Li, Fan Xiao","doi":"10.1016/j.eij.2025.100689","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the openness and sharing nature of wireless networks, they are vulnerable to various network attacks. To promptly identify and mitigate abnormal behaviors while ensuring normal operation and security, this paper proposes an algorithm for detecting compromised nodes in wireless networks based on network traffic anomaly analysis. In the proposed detection architecture, a network traffic data acquisition module mines and reconstructs real-time traffic data from wireless nodes, removing redundant information. The processed data is then fed into an anomaly analysis module, where abnormal traffic features are extracted and dimensionality-reduced via a stacked autoencoder to form standardized anomaly profiles. These features are analyzed by an intrusion detection module combining particle swarm optimization and support vector machine algorithms. Experimental results demonstrate that the algorithm efficiently extracts traffic anomalies, accurately detects attack duration and traffic volume changes in compromised nodes, and maintains a false detection rate below 6 %.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"30 ","pages":"Article 100689"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intrusion detection algorithm of wireless network based on network traffic anomaly analysis\",\"authors\":\"Xiangqian Nie, Jiao Xing, Qimeng Li, Fan Xiao\",\"doi\":\"10.1016/j.eij.2025.100689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to the openness and sharing nature of wireless networks, they are vulnerable to various network attacks. To promptly identify and mitigate abnormal behaviors while ensuring normal operation and security, this paper proposes an algorithm for detecting compromised nodes in wireless networks based on network traffic anomaly analysis. In the proposed detection architecture, a network traffic data acquisition module mines and reconstructs real-time traffic data from wireless nodes, removing redundant information. The processed data is then fed into an anomaly analysis module, where abnormal traffic features are extracted and dimensionality-reduced via a stacked autoencoder to form standardized anomaly profiles. These features are analyzed by an intrusion detection module combining particle swarm optimization and support vector machine algorithms. Experimental results demonstrate that the algorithm efficiently extracts traffic anomalies, accurately detects attack duration and traffic volume changes in compromised nodes, and maintains a false detection rate below 6 %.</div></div>\",\"PeriodicalId\":56010,\"journal\":{\"name\":\"Egyptian Informatics Journal\",\"volume\":\"30 \",\"pages\":\"Article 100689\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Informatics Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110866525000829\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866525000829","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Intrusion detection algorithm of wireless network based on network traffic anomaly analysis
Due to the openness and sharing nature of wireless networks, they are vulnerable to various network attacks. To promptly identify and mitigate abnormal behaviors while ensuring normal operation and security, this paper proposes an algorithm for detecting compromised nodes in wireless networks based on network traffic anomaly analysis. In the proposed detection architecture, a network traffic data acquisition module mines and reconstructs real-time traffic data from wireless nodes, removing redundant information. The processed data is then fed into an anomaly analysis module, where abnormal traffic features are extracted and dimensionality-reduced via a stacked autoencoder to form standardized anomaly profiles. These features are analyzed by an intrusion detection module combining particle swarm optimization and support vector machine algorithms. Experimental results demonstrate that the algorithm efficiently extracts traffic anomalies, accurately detects attack duration and traffic volume changes in compromised nodes, and maintains a false detection rate below 6 %.
期刊介绍:
The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.