Flavia Neto de Jesus , Simone Aparecida Teixeira , Leonardo André da Costa Marques , Marinella Holzhausen , Camila Ferreira Wenceslau , Edlaine Linares , Soraia Kátia Pereira Costa , Luciana Venturini Rossoni , Ohara Augusto , Marcelo Nicolás Muscará
{"title":"轻度结扎性牙周炎大鼠肠系膜抵抗动脉中存在功能失调的可溶性鸟苷酸环化酶","authors":"Flavia Neto de Jesus , Simone Aparecida Teixeira , Leonardo André da Costa Marques , Marinella Holzhausen , Camila Ferreira Wenceslau , Edlaine Linares , Soraia Kátia Pereira Costa , Luciana Venturini Rossoni , Ohara Augusto , Marcelo Nicolás Muscará","doi":"10.1016/j.ejphar.2025.177632","DOIUrl":null,"url":null,"abstract":"<div><div>Periodontitis is notable for its high prevalence in the oral cavity and its association with systemic diseases. Functional alterations in vasomotor activity occur in the arteries of rats with mild periodontitis, primarily due to decreased soluble guanylate cyclase (sGC) enzyme activity. This study aims to investigate the functional response of mesenteric resistance arteries (MRA) obtained from rats with mild periodontitis. Vascular reactivity of MRAs from rats in the ligature (L) or sham (S) groups was assessed using a wire myograph. Additionally, antioxidant enzyme activity, the presence of nitrated proteins, cyclic guanosine monophosphate (cGMP) levels, and electron paramagnetic resonance (EPR) spectroscopy were analyzed. The MRAs from the L group showed lower pD2 values in response to sodium nitroprusside or sildenafil and decreased Emax to the sGC stimulator Bay 41–2271 compared to the S group. However, no differences were observed between the groups with respect to the sGC activator Bay 60–2770. The L group exhibited increased nitrotyrosine protein expression, enhanced catalase activity, and reduced superoxide dismutase activity, along with decreased cGMP content after SNP stimulation. The EPR spectrum of the L group showed a weak peak at g 6.00, compared to the S group, confirming the oxidation of sGC heme-iron (Fe<sup>+2</sup>) to heme-Fe<sup>+3</sup>. In the early phase of bilateral ligature-induced periodontitis in rats, functional changes in the nitric oxide (NO)-cGMP pathway occur in the MRA due to reduced sGC activity and excessive production of iNOS-derived NO, superoxide anion, or a combination of both.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"998 ","pages":"Article 177632"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Presence of dysfunctional soluble guanylate cyclase in mesenteric resistance arteries from rats with mild ligature-induced periodontitis\",\"authors\":\"Flavia Neto de Jesus , Simone Aparecida Teixeira , Leonardo André da Costa Marques , Marinella Holzhausen , Camila Ferreira Wenceslau , Edlaine Linares , Soraia Kátia Pereira Costa , Luciana Venturini Rossoni , Ohara Augusto , Marcelo Nicolás Muscará\",\"doi\":\"10.1016/j.ejphar.2025.177632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Periodontitis is notable for its high prevalence in the oral cavity and its association with systemic diseases. Functional alterations in vasomotor activity occur in the arteries of rats with mild periodontitis, primarily due to decreased soluble guanylate cyclase (sGC) enzyme activity. This study aims to investigate the functional response of mesenteric resistance arteries (MRA) obtained from rats with mild periodontitis. Vascular reactivity of MRAs from rats in the ligature (L) or sham (S) groups was assessed using a wire myograph. Additionally, antioxidant enzyme activity, the presence of nitrated proteins, cyclic guanosine monophosphate (cGMP) levels, and electron paramagnetic resonance (EPR) spectroscopy were analyzed. The MRAs from the L group showed lower pD2 values in response to sodium nitroprusside or sildenafil and decreased Emax to the sGC stimulator Bay 41–2271 compared to the S group. However, no differences were observed between the groups with respect to the sGC activator Bay 60–2770. The L group exhibited increased nitrotyrosine protein expression, enhanced catalase activity, and reduced superoxide dismutase activity, along with decreased cGMP content after SNP stimulation. The EPR spectrum of the L group showed a weak peak at g 6.00, compared to the S group, confirming the oxidation of sGC heme-iron (Fe<sup>+2</sup>) to heme-Fe<sup>+3</sup>. In the early phase of bilateral ligature-induced periodontitis in rats, functional changes in the nitric oxide (NO)-cGMP pathway occur in the MRA due to reduced sGC activity and excessive production of iNOS-derived NO, superoxide anion, or a combination of both.</div></div>\",\"PeriodicalId\":12004,\"journal\":{\"name\":\"European journal of pharmacology\",\"volume\":\"998 \",\"pages\":\"Article 177632\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014299925003863\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299925003863","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Presence of dysfunctional soluble guanylate cyclase in mesenteric resistance arteries from rats with mild ligature-induced periodontitis
Periodontitis is notable for its high prevalence in the oral cavity and its association with systemic diseases. Functional alterations in vasomotor activity occur in the arteries of rats with mild periodontitis, primarily due to decreased soluble guanylate cyclase (sGC) enzyme activity. This study aims to investigate the functional response of mesenteric resistance arteries (MRA) obtained from rats with mild periodontitis. Vascular reactivity of MRAs from rats in the ligature (L) or sham (S) groups was assessed using a wire myograph. Additionally, antioxidant enzyme activity, the presence of nitrated proteins, cyclic guanosine monophosphate (cGMP) levels, and electron paramagnetic resonance (EPR) spectroscopy were analyzed. The MRAs from the L group showed lower pD2 values in response to sodium nitroprusside or sildenafil and decreased Emax to the sGC stimulator Bay 41–2271 compared to the S group. However, no differences were observed between the groups with respect to the sGC activator Bay 60–2770. The L group exhibited increased nitrotyrosine protein expression, enhanced catalase activity, and reduced superoxide dismutase activity, along with decreased cGMP content after SNP stimulation. The EPR spectrum of the L group showed a weak peak at g 6.00, compared to the S group, confirming the oxidation of sGC heme-iron (Fe+2) to heme-Fe+3. In the early phase of bilateral ligature-induced periodontitis in rats, functional changes in the nitric oxide (NO)-cGMP pathway occur in the MRA due to reduced sGC activity and excessive production of iNOS-derived NO, superoxide anion, or a combination of both.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.