Peter L. Rodríguez-Kessler and Alvaro Muñoz-Castro
{"title":"三重芳香硼烷。硼烷邻碳硼烷的球形芳香性作为簇结构的有用三聚体节点","authors":"Peter L. Rodríguez-Kessler and Alvaro Muñoz-Castro","doi":"10.1039/D5CP00867K","DOIUrl":null,"url":null,"abstract":"<p >The characterized tris(<em>ortho</em>-carboranyl)borane (BoCb<small><sub>3</sub></small>) structure enables further understanding of building blocks in three-fold architectures as useful nodes for envisaging cluster-based materials, extending the already known linear array. Our results show the formation of shielding cones enabled in adjacent cluster units that overlap in long-range regions by different orientations of the applied field, in contrast to planar aromatic triarylborane counterparts. Thus, three spherical aromatic circuits or states are retained in the resulting molecular unit, as indicated by the isotropic and anisotropic descriptors of the magnetic behavior. In addition, the superacidic Lewis characteristics of BoCb<small><sub>3</sub></small>, in comparison to triarylboranes, are enabled by the increase in the orbital interaction towards adduct formation, highlighting the relevance of the donor–acceptor charge transfer, where the control of steric repulsion may lead to further stabilization, suggesting plausible enhanced Lewis acidic performance. These results enhance the understanding of cluster-based architectures, paving the way for explorative synthesis efforts toward the achievement of novel superacidic Lewis species by using polyhedral standing molecules.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 21","pages":" 11112-11118"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-fold aromatic boranes: spherical aromaticity in borane ortho-carboranes as useful trimer nodes for cluster-based architectures†\",\"authors\":\"Peter L. Rodríguez-Kessler and Alvaro Muñoz-Castro\",\"doi\":\"10.1039/D5CP00867K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The characterized tris(<em>ortho</em>-carboranyl)borane (BoCb<small><sub>3</sub></small>) structure enables further understanding of building blocks in three-fold architectures as useful nodes for envisaging cluster-based materials, extending the already known linear array. Our results show the formation of shielding cones enabled in adjacent cluster units that overlap in long-range regions by different orientations of the applied field, in contrast to planar aromatic triarylborane counterparts. Thus, three spherical aromatic circuits or states are retained in the resulting molecular unit, as indicated by the isotropic and anisotropic descriptors of the magnetic behavior. In addition, the superacidic Lewis characteristics of BoCb<small><sub>3</sub></small>, in comparison to triarylboranes, are enabled by the increase in the orbital interaction towards adduct formation, highlighting the relevance of the donor–acceptor charge transfer, where the control of steric repulsion may lead to further stabilization, suggesting plausible enhanced Lewis acidic performance. These results enhance the understanding of cluster-based architectures, paving the way for explorative synthesis efforts toward the achievement of novel superacidic Lewis species by using polyhedral standing molecules.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 21\",\"pages\":\" 11112-11118\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00867k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00867k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Three-fold aromatic boranes: spherical aromaticity in borane ortho-carboranes as useful trimer nodes for cluster-based architectures†
The characterized tris(ortho-carboranyl)borane (BoCb3) structure enables further understanding of building blocks in three-fold architectures as useful nodes for envisaging cluster-based materials, extending the already known linear array. Our results show the formation of shielding cones enabled in adjacent cluster units that overlap in long-range regions by different orientations of the applied field, in contrast to planar aromatic triarylborane counterparts. Thus, three spherical aromatic circuits or states are retained in the resulting molecular unit, as indicated by the isotropic and anisotropic descriptors of the magnetic behavior. In addition, the superacidic Lewis characteristics of BoCb3, in comparison to triarylboranes, are enabled by the increase in the orbital interaction towards adduct formation, highlighting the relevance of the donor–acceptor charge transfer, where the control of steric repulsion may lead to further stabilization, suggesting plausible enhanced Lewis acidic performance. These results enhance the understanding of cluster-based architectures, paving the way for explorative synthesis efforts toward the achievement of novel superacidic Lewis species by using polyhedral standing molecules.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.