n -去糖基化靶向嵌合体(DGlyTAC):一种通过特异性去除n -聚糖使免疫检查点蛋白失活的策略

IF 40.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Li Li, Jiajia Wu, Weiqian Cao, Wei Zhang, Qi Wu, Yaxu Li, Yanrong Yang, Zezhi Shan, Zening Zheng, Xin Ge, Liang Lin, Ping Wang
{"title":"n -去糖基化靶向嵌合体(DGlyTAC):一种通过特异性去除n -聚糖使免疫检查点蛋白失活的策略","authors":"Li Li, Jiajia Wu, Weiqian Cao, Wei Zhang, Qi Wu, Yaxu Li, Yanrong Yang, Zezhi Shan, Zening Zheng, Xin Ge, Liang Lin, Ping Wang","doi":"10.1038/s41392-025-02219-6","DOIUrl":null,"url":null,"abstract":"<p>Among the leading methods for triggering therapeutic anti-cancer immunity is the inhibition of immune checkpoint pathways. N-glycosylation is found to be essential for the function of various immune checkpoint proteins, playing a critical role in their stability and interaction with immune cells. Removing the N-glycans of these proteins seems to be an alternative therapy, but there is a lack of a de-N-glycosylation technique for target protein specificity, which limits its clinical application. Here, we developed a novel technique for specifically removing N-glycans from a target protein on the cell surface, named deglycosylation targeting chimera (DGlyTAC), which employs a fusing protein consisting of Peptide-N-glycosidase F (PNGF) and target-specific nanobody/affibody (Nb/Af). The DGlyTAC technique was developed to target a range of glycosylated surface proteins, especially these immune checkpoints—CD24, CD47, and PD-L1, which minimally affected the overall N-glycosylation landscape and the N-glycosylation of other representative membrane proteins, ensuring high specificity and minimal off-target effects. Importantly, DGlyTAC technique was successfully applied to lead inactivation of these immune checkpoints, especially PD-L1, and showed more potential in cancer immunotherapy than inhibitors. Finally, PD-L1 targeted DGlyTAC showed therapeutic effects on several tumors in vivo, even better than PD-L1 antibody. Overall, we created a novel target-specific N-glysocylation erasing technique that establishes a modular strategy for directing membrane proteins inactivation, with broad implications on tumor immune therapeutics.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"36 1","pages":""},"PeriodicalIF":40.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N-deglycosylation targeting chimera (DGlyTAC): a strategy for immune checkpoint proteins inactivation by specifically removing N-glycan\",\"authors\":\"Li Li, Jiajia Wu, Weiqian Cao, Wei Zhang, Qi Wu, Yaxu Li, Yanrong Yang, Zezhi Shan, Zening Zheng, Xin Ge, Liang Lin, Ping Wang\",\"doi\":\"10.1038/s41392-025-02219-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Among the leading methods for triggering therapeutic anti-cancer immunity is the inhibition of immune checkpoint pathways. N-glycosylation is found to be essential for the function of various immune checkpoint proteins, playing a critical role in their stability and interaction with immune cells. Removing the N-glycans of these proteins seems to be an alternative therapy, but there is a lack of a de-N-glycosylation technique for target protein specificity, which limits its clinical application. Here, we developed a novel technique for specifically removing N-glycans from a target protein on the cell surface, named deglycosylation targeting chimera (DGlyTAC), which employs a fusing protein consisting of Peptide-N-glycosidase F (PNGF) and target-specific nanobody/affibody (Nb/Af). The DGlyTAC technique was developed to target a range of glycosylated surface proteins, especially these immune checkpoints—CD24, CD47, and PD-L1, which minimally affected the overall N-glycosylation landscape and the N-glycosylation of other representative membrane proteins, ensuring high specificity and minimal off-target effects. Importantly, DGlyTAC technique was successfully applied to lead inactivation of these immune checkpoints, especially PD-L1, and showed more potential in cancer immunotherapy than inhibitors. Finally, PD-L1 targeted DGlyTAC showed therapeutic effects on several tumors in vivo, even better than PD-L1 antibody. Overall, we created a novel target-specific N-glysocylation erasing technique that establishes a modular strategy for directing membrane proteins inactivation, with broad implications on tumor immune therapeutics.</p>\",\"PeriodicalId\":21766,\"journal\":{\"name\":\"Signal Transduction and Targeted Therapy\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":40.8000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Transduction and Targeted Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41392-025-02219-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Transduction and Targeted Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41392-025-02219-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

触发治疗性抗癌免疫的主要方法之一是抑制免疫检查点途径。n -糖基化对多种免疫检查点蛋白的功能至关重要,在其稳定性和与免疫细胞的相互作用中起着关键作用。去除这些蛋白的n -糖基似乎是一种替代疗法,但缺乏针对靶蛋白特异性的去n -糖基化技术,这限制了其临床应用。在这里,我们开发了一种新的技术,可以从细胞表面的靶蛋白上特异性地去除n -聚糖,称为去糖基化靶向嵌合体(DGlyTAC),它使用由肽- n -糖苷酶F (PNGF)和靶特异性纳米体/粘附体(Nb/Af)组成的融合蛋白。DGlyTAC技术被开发用于靶向一系列糖基化表面蛋白,特别是这些免疫检查点- cd24, CD47和PD-L1,它们对整体n -糖基化图景和其他代表性膜蛋白的n -糖基化影响最小,确保了高特异性和最小的脱靶效应。重要的是,DGlyTAC技术成功地应用于导致这些免疫检查点失活,特别是PD-L1,并且在癌症免疫治疗中显示出比抑制剂更大的潜力。最后,PD-L1靶向DGlyTAC在体内对多种肿瘤显示出治疗效果,甚至优于PD-L1抗体。总的来说,我们创造了一种新的靶向特异性n -糖基化擦除技术,该技术建立了指导膜蛋白失活的模块化策略,对肿瘤免疫治疗具有广泛的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

N-deglycosylation targeting chimera (DGlyTAC): a strategy for immune checkpoint proteins inactivation by specifically removing N-glycan

N-deglycosylation targeting chimera (DGlyTAC): a strategy for immune checkpoint proteins inactivation by specifically removing N-glycan

Among the leading methods for triggering therapeutic anti-cancer immunity is the inhibition of immune checkpoint pathways. N-glycosylation is found to be essential for the function of various immune checkpoint proteins, playing a critical role in their stability and interaction with immune cells. Removing the N-glycans of these proteins seems to be an alternative therapy, but there is a lack of a de-N-glycosylation technique for target protein specificity, which limits its clinical application. Here, we developed a novel technique for specifically removing N-glycans from a target protein on the cell surface, named deglycosylation targeting chimera (DGlyTAC), which employs a fusing protein consisting of Peptide-N-glycosidase F (PNGF) and target-specific nanobody/affibody (Nb/Af). The DGlyTAC technique was developed to target a range of glycosylated surface proteins, especially these immune checkpoints—CD24, CD47, and PD-L1, which minimally affected the overall N-glycosylation landscape and the N-glycosylation of other representative membrane proteins, ensuring high specificity and minimal off-target effects. Importantly, DGlyTAC technique was successfully applied to lead inactivation of these immune checkpoints, especially PD-L1, and showed more potential in cancer immunotherapy than inhibitors. Finally, PD-L1 targeted DGlyTAC showed therapeutic effects on several tumors in vivo, even better than PD-L1 antibody. Overall, we created a novel target-specific N-glysocylation erasing technique that establishes a modular strategy for directing membrane proteins inactivation, with broad implications on tumor immune therapeutics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Transduction and Targeted Therapy
Signal Transduction and Targeted Therapy Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
44.50
自引率
1.50%
发文量
384
审稿时长
5 weeks
期刊介绍: Signal Transduction and Targeted Therapy is an open access journal that focuses on timely publication of cutting-edge discoveries and advancements in basic science and clinical research related to signal transduction and targeted therapy. Scope: The journal covers research on major human diseases, including, but not limited to: Cancer,Cardiovascular diseases,Autoimmune diseases,Nervous system diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信