Xiaoyu Zhang, Kuan-Jui Su, Bodhisattwa Banerjee, Ittai Eres, Yi-Hsiang Hsu, Carolyn J. Crandall, Rajashekar Donaka, Zhe Han, Rebecca D. Jackson, Hanhan Liu, Zhe Luo, Braxton D. Mitchell, Chuan Qiu, Qing Tian, Hui Shen, Ming-Ju Tsai, Kerri L. Wiggins, Hanfei Xu, Michelle Yau, Lan-Juan Zhao, Xiao Zhang, May E. Montasser, Douglas P. Kiel, Hong-Wen Deng, Ching-Ti Liu, David Karasik
{"title":"瘦体重的多祖先全基因组测序分析","authors":"Xiaoyu Zhang, Kuan-Jui Su, Bodhisattwa Banerjee, Ittai Eres, Yi-Hsiang Hsu, Carolyn J. Crandall, Rajashekar Donaka, Zhe Han, Rebecca D. Jackson, Hanhan Liu, Zhe Luo, Braxton D. Mitchell, Chuan Qiu, Qing Tian, Hui Shen, Ming-Ju Tsai, Kerri L. Wiggins, Hanfei Xu, Michelle Yau, Lan-Juan Zhao, Xiao Zhang, May E. Montasser, Douglas P. Kiel, Hong-Wen Deng, Ching-Ti Liu, David Karasik","doi":"10.1186/s13059-025-03520-x","DOIUrl":null,"url":null,"abstract":"Lean body mass is a crucial physiological component of body composition. Although lean body mass has a high heritability, studies evaluating the genetic determinants of lean mass (LM) have to date been limited largely to genome-wide association studies (GWAS) and common variants. Using whole genome sequencing (WGS)-based studies, we aimed to discover novel genetic variants associated with LM in population-based cohorts with multiple ancestries. We describe the largest WGS-based meta-analysis of lean body mass to date, encompassing 10,729 WGS samples from six TOPMed cohorts and the Louisiana Osteoporosis Study (LOS) cohort, measured with dual-energy X-ray absorptiometry. We identify seven genome-wide loci significantly associated with LM not reported by previous GWAS. We partially replicate these associations in UK Biobank samples. In rare variant analysis, we discover one novel protein-coding gene, DMAC1, associated with both whole-body LM and appendicular LM in females, and a long non-coding RNA gene linked to appendicular LM in males. Both genes exhibit notably high expression levels in skeletal muscle tissue. We investigate the functional roles of two novel lean-mass-related genes, EMP2 and SSUH2, in animal models. EMP2 deficiency in Drosophila leads to significantly reduced mobility without altering muscle tissue or body fat morphology, whereas an SSUH2 gene mutation in zebrafish stimulates muscle fiber growth. Our comprehensive analysis, encompassing a large-scale WGS meta-analysis and functional investigations, reveals novel genomic loci and genes associated with lean mass traits, shedding new insights into pathways influencing muscle metabolism and muscle mass regulation.\n","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"91 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-ancestry whole genome sequencing analysis of lean body mass\",\"authors\":\"Xiaoyu Zhang, Kuan-Jui Su, Bodhisattwa Banerjee, Ittai Eres, Yi-Hsiang Hsu, Carolyn J. Crandall, Rajashekar Donaka, Zhe Han, Rebecca D. Jackson, Hanhan Liu, Zhe Luo, Braxton D. Mitchell, Chuan Qiu, Qing Tian, Hui Shen, Ming-Ju Tsai, Kerri L. Wiggins, Hanfei Xu, Michelle Yau, Lan-Juan Zhao, Xiao Zhang, May E. Montasser, Douglas P. Kiel, Hong-Wen Deng, Ching-Ti Liu, David Karasik\",\"doi\":\"10.1186/s13059-025-03520-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lean body mass is a crucial physiological component of body composition. Although lean body mass has a high heritability, studies evaluating the genetic determinants of lean mass (LM) have to date been limited largely to genome-wide association studies (GWAS) and common variants. Using whole genome sequencing (WGS)-based studies, we aimed to discover novel genetic variants associated with LM in population-based cohorts with multiple ancestries. We describe the largest WGS-based meta-analysis of lean body mass to date, encompassing 10,729 WGS samples from six TOPMed cohorts and the Louisiana Osteoporosis Study (LOS) cohort, measured with dual-energy X-ray absorptiometry. We identify seven genome-wide loci significantly associated with LM not reported by previous GWAS. We partially replicate these associations in UK Biobank samples. In rare variant analysis, we discover one novel protein-coding gene, DMAC1, associated with both whole-body LM and appendicular LM in females, and a long non-coding RNA gene linked to appendicular LM in males. Both genes exhibit notably high expression levels in skeletal muscle tissue. We investigate the functional roles of two novel lean-mass-related genes, EMP2 and SSUH2, in animal models. EMP2 deficiency in Drosophila leads to significantly reduced mobility without altering muscle tissue or body fat morphology, whereas an SSUH2 gene mutation in zebrafish stimulates muscle fiber growth. Our comprehensive analysis, encompassing a large-scale WGS meta-analysis and functional investigations, reveals novel genomic loci and genes associated with lean mass traits, shedding new insights into pathways influencing muscle metabolism and muscle mass regulation.\\n\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03520-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03520-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Multi-ancestry whole genome sequencing analysis of lean body mass
Lean body mass is a crucial physiological component of body composition. Although lean body mass has a high heritability, studies evaluating the genetic determinants of lean mass (LM) have to date been limited largely to genome-wide association studies (GWAS) and common variants. Using whole genome sequencing (WGS)-based studies, we aimed to discover novel genetic variants associated with LM in population-based cohorts with multiple ancestries. We describe the largest WGS-based meta-analysis of lean body mass to date, encompassing 10,729 WGS samples from six TOPMed cohorts and the Louisiana Osteoporosis Study (LOS) cohort, measured with dual-energy X-ray absorptiometry. We identify seven genome-wide loci significantly associated with LM not reported by previous GWAS. We partially replicate these associations in UK Biobank samples. In rare variant analysis, we discover one novel protein-coding gene, DMAC1, associated with both whole-body LM and appendicular LM in females, and a long non-coding RNA gene linked to appendicular LM in males. Both genes exhibit notably high expression levels in skeletal muscle tissue. We investigate the functional roles of two novel lean-mass-related genes, EMP2 and SSUH2, in animal models. EMP2 deficiency in Drosophila leads to significantly reduced mobility without altering muscle tissue or body fat morphology, whereas an SSUH2 gene mutation in zebrafish stimulates muscle fiber growth. Our comprehensive analysis, encompassing a large-scale WGS meta-analysis and functional investigations, reveals novel genomic loci and genes associated with lean mass traits, shedding new insights into pathways influencing muscle metabolism and muscle mass regulation.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.