铁依赖性jmjd1a介导的H3K9me2去甲基化以空间基因组组织依赖的方式调节脂肪形成过程中的基因表达

IF 1.3 4区 生物学 Q4 CELL BIOLOGY
Genes to Cells Pub Date : 2025-04-28 DOI:10.1111/gtc.70023
Shinnosuke Masuda, Tetsuro Komatsu, Safiya Atia, Tomohiro Suzuki, Mayuko Hayashi, Atsushi Toyoda, Hiroshi Kimura, Takeshi Inagaki
{"title":"铁依赖性jmjd1a介导的H3K9me2去甲基化以空间基因组组织依赖的方式调节脂肪形成过程中的基因表达","authors":"Shinnosuke Masuda,&nbsp;Tetsuro Komatsu,&nbsp;Safiya Atia,&nbsp;Tomohiro Suzuki,&nbsp;Mayuko Hayashi,&nbsp;Atsushi Toyoda,&nbsp;Hiroshi Kimura,&nbsp;Takeshi Inagaki","doi":"10.1111/gtc.70023","DOIUrl":null,"url":null,"abstract":"<p>Chromatin restructuring across multiple hierarchical scales directs lineage-specific gene expression during cell differentiation. Here, we investigated the iron-dependent demethylation of histone H3 lysine 9 dimethylation (H3K9me2) by the demethylase jumonji domain-containing 1A (JMJD1A) in adipocyte differentiation. Using the 3T3-L1 adipocyte differentiation model, we show that JMJD1A knockdown increases H3K9me2 levels, whereas forced expression of wild-type JMJD1A reduces H3K9me2 levels within the A compartment, as defined by megabase scale high-throughput chromosome conformation capture (Hi-C) data. In contrast, a JMJD1A mutant defective in iron coordination was unable to demethylate H3K9me2. Genome-wide analyses of H3K9me2 levels at transcription start sites on a kilobase scale demonstrated that JMJD1A targets genes involved in peroxisome proliferator-activated receptor signaling and lipid metabolism in an iron-dependent manner, supporting a model in which H3K9me2 demethylation facilitates adipogenic transcription networks. Furthermore, we examined the relationship between H3K9me2 and lamin B1 levels within lamina-associated domains (LADs) specifically reorganized during differentiation. Although LADs with higher H3K9me2 exhibited modestly elevated lamin B1 association in preadipocytes, lamin B1 levels declined during differentiation regardless of H3K9me2 status. These findings emphasize the importance of the iron-dependent enzymatic function in JMJD1A and broaden our understanding of how specific H3K9 demethylases coordinate compartmentalized epigenetic programs during adipogenesis.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"30 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gtc.70023","citationCount":"0","resultStr":"{\"title\":\"Iron-Dependent JMJD1A-Mediated Demethylation of H3K9me2 Regulates Gene Expression During Adipogenesis in a Spatial Genome Organization-Dependent Manner\",\"authors\":\"Shinnosuke Masuda,&nbsp;Tetsuro Komatsu,&nbsp;Safiya Atia,&nbsp;Tomohiro Suzuki,&nbsp;Mayuko Hayashi,&nbsp;Atsushi Toyoda,&nbsp;Hiroshi Kimura,&nbsp;Takeshi Inagaki\",\"doi\":\"10.1111/gtc.70023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chromatin restructuring across multiple hierarchical scales directs lineage-specific gene expression during cell differentiation. Here, we investigated the iron-dependent demethylation of histone H3 lysine 9 dimethylation (H3K9me2) by the demethylase jumonji domain-containing 1A (JMJD1A) in adipocyte differentiation. Using the 3T3-L1 adipocyte differentiation model, we show that JMJD1A knockdown increases H3K9me2 levels, whereas forced expression of wild-type JMJD1A reduces H3K9me2 levels within the A compartment, as defined by megabase scale high-throughput chromosome conformation capture (Hi-C) data. In contrast, a JMJD1A mutant defective in iron coordination was unable to demethylate H3K9me2. Genome-wide analyses of H3K9me2 levels at transcription start sites on a kilobase scale demonstrated that JMJD1A targets genes involved in peroxisome proliferator-activated receptor signaling and lipid metabolism in an iron-dependent manner, supporting a model in which H3K9me2 demethylation facilitates adipogenic transcription networks. Furthermore, we examined the relationship between H3K9me2 and lamin B1 levels within lamina-associated domains (LADs) specifically reorganized during differentiation. Although LADs with higher H3K9me2 exhibited modestly elevated lamin B1 association in preadipocytes, lamin B1 levels declined during differentiation regardless of H3K9me2 status. These findings emphasize the importance of the iron-dependent enzymatic function in JMJD1A and broaden our understanding of how specific H3K9 demethylases coordinate compartmentalized epigenetic programs during adipogenesis.</p>\",\"PeriodicalId\":12742,\"journal\":{\"name\":\"Genes to Cells\",\"volume\":\"30 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gtc.70023\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes to Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gtc.70023\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes to Cells","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.70023","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在细胞分化过程中,染色质重组在多个层次尺度上指导谱系特异性基因表达。在这里,我们研究了脂肪细胞分化过程中铁依赖性组蛋白H3赖氨酸9二甲基化(H3K9me2)通过含jumonji结构域1A (JMJD1A)去甲基化。利用3T3-L1脂肪细胞分化模型,我们发现JMJD1A敲低会增加H3K9me2水平,而野生型JMJD1A的强制表达会降低A室内的H3K9me2水平,这是由兆基级高通量染色体构象捕获(Hi-C)数据定义的。相比之下,铁配位缺陷的JMJD1A突变体无法使H3K9me2去甲基化。对转录起始位点上H3K9me2水平的全基因组分析表明,JMJD1A以铁依赖的方式靶向参与过氧化物酶体增殖体激活受体信号传导和脂质代谢的基因,支持H3K9me2去甲基化促进脂肪生成转录网络的模型。此外,我们还研究了分化过程中重组的层相关结构域(LADs)内H3K9me2与层蛋白B1水平之间的关系。尽管具有较高H3K9me2的lad在前脂肪细胞中表现出适度升高的层粘连蛋白B1关联,但无论H3K9me2状态如何,层粘连蛋白B1水平在分化过程中都有所下降。这些发现强调了JMJD1A中铁依赖性酶功能的重要性,并拓宽了我们对脂肪形成过程中特异性H3K9去甲基化酶如何协调区室化表观遗传程序的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Iron-Dependent JMJD1A-Mediated Demethylation of H3K9me2 Regulates Gene Expression During Adipogenesis in a Spatial Genome Organization-Dependent Manner

Iron-Dependent JMJD1A-Mediated Demethylation of H3K9me2 Regulates Gene Expression During Adipogenesis in a Spatial Genome Organization-Dependent Manner

Chromatin restructuring across multiple hierarchical scales directs lineage-specific gene expression during cell differentiation. Here, we investigated the iron-dependent demethylation of histone H3 lysine 9 dimethylation (H3K9me2) by the demethylase jumonji domain-containing 1A (JMJD1A) in adipocyte differentiation. Using the 3T3-L1 adipocyte differentiation model, we show that JMJD1A knockdown increases H3K9me2 levels, whereas forced expression of wild-type JMJD1A reduces H3K9me2 levels within the A compartment, as defined by megabase scale high-throughput chromosome conformation capture (Hi-C) data. In contrast, a JMJD1A mutant defective in iron coordination was unable to demethylate H3K9me2. Genome-wide analyses of H3K9me2 levels at transcription start sites on a kilobase scale demonstrated that JMJD1A targets genes involved in peroxisome proliferator-activated receptor signaling and lipid metabolism in an iron-dependent manner, supporting a model in which H3K9me2 demethylation facilitates adipogenic transcription networks. Furthermore, we examined the relationship between H3K9me2 and lamin B1 levels within lamina-associated domains (LADs) specifically reorganized during differentiation. Although LADs with higher H3K9me2 exhibited modestly elevated lamin B1 association in preadipocytes, lamin B1 levels declined during differentiation regardless of H3K9me2 status. These findings emphasize the importance of the iron-dependent enzymatic function in JMJD1A and broaden our understanding of how specific H3K9 demethylases coordinate compartmentalized epigenetic programs during adipogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes to Cells
Genes to Cells 生物-细胞生物学
CiteScore
3.40
自引率
0.00%
发文量
71
审稿时长
3 months
期刊介绍: Genes to Cells provides an international forum for the publication of papers describing important aspects of molecular and cellular biology. The journal aims to present papers that provide conceptual advance in the relevant field. Particular emphasis will be placed on work aimed at understanding the basic mechanisms underlying biological events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信