东亚多期走滑运动与郯庐断裂带的扩展

IF 3.5 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Shuai ZHANG, Lu DAI, Guang ZHU
{"title":"东亚多期走滑运动与郯庐断裂带的扩展","authors":"Shuai ZHANG,&nbsp;Lu DAI,&nbsp;Guang ZHU","doi":"10.1111/1755-6724.15282","DOIUrl":null,"url":null,"abstract":"<p>The approximately 3000 km long Tan–Lu fault zone (TLFZ) in East Asia is the longest continental strike-slip fault zone in the world and exemplifies how such a fault zone forms and propagates on a continental scale. Structural and geochronological data from the TLFZ and surrounding regions indicate that the fault zone originated as NE/SW-striking sinistral ductile shear zones along an oblique continental convergence margin during the Triassic indentation collision between the North China Craton and the Yangtze Block. The Triassic fault zone, with a total length of about 720 km between the Dabie and Sulu orogens, exhibited an apparent sinistral offset of approximately 300 km along the TLFZ. The second stage of sinistral movement occurred in the earliest Late Jurassic, reactivating the pre-existing southern segment and propagating northwards to the southern coastline of present-day Bohai Bay, as well as forming a significant portion of the Dunhua–Mishan fault zone. The third stage of sinistral movement, in the earliest Early Cretaceous, was the most intense strike-slip movement of the Mesozoic, leading to the complete linkage of the TLFZ. This stage included further northward propagation of the southern–middle segment, both southward and northward propagation of the Dunhua–Mishan fault zone, as well as the formation of the entire Yilan–Yitong fault zone. The fourth stage, in the earliest Late Cretaceous, involved the reactivation of the entire TLFZ. Following its Triassic origin due to the indentation collision, the subduction of the Paleo-Pacific Plate and the subduction and closure of the Mongol–Okhotsk Ocean were responsible for the multi-stage sinistral movements from the Late Jurassic to the Cretaceous. The evolution of the TLFZ demonstrates that a continental-scale strike-slip fault zone (&gt;1000 km long) forms through multiple stages of propagation and linkage in dynamic settings of plate convergence.</p>","PeriodicalId":7095,"journal":{"name":"Acta Geologica Sinica ‐ English Edition","volume":"99 2","pages":"352-369"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1755-6724.15282","citationCount":"0","resultStr":"{\"title\":\"Multiple Stages of Strike-slip Movement and the Propagation of the Tan–Lu Fault Zone, East Asia\",\"authors\":\"Shuai ZHANG,&nbsp;Lu DAI,&nbsp;Guang ZHU\",\"doi\":\"10.1111/1755-6724.15282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The approximately 3000 km long Tan–Lu fault zone (TLFZ) in East Asia is the longest continental strike-slip fault zone in the world and exemplifies how such a fault zone forms and propagates on a continental scale. Structural and geochronological data from the TLFZ and surrounding regions indicate that the fault zone originated as NE/SW-striking sinistral ductile shear zones along an oblique continental convergence margin during the Triassic indentation collision between the North China Craton and the Yangtze Block. The Triassic fault zone, with a total length of about 720 km between the Dabie and Sulu orogens, exhibited an apparent sinistral offset of approximately 300 km along the TLFZ. The second stage of sinistral movement occurred in the earliest Late Jurassic, reactivating the pre-existing southern segment and propagating northwards to the southern coastline of present-day Bohai Bay, as well as forming a significant portion of the Dunhua–Mishan fault zone. The third stage of sinistral movement, in the earliest Early Cretaceous, was the most intense strike-slip movement of the Mesozoic, leading to the complete linkage of the TLFZ. This stage included further northward propagation of the southern–middle segment, both southward and northward propagation of the Dunhua–Mishan fault zone, as well as the formation of the entire Yilan–Yitong fault zone. The fourth stage, in the earliest Late Cretaceous, involved the reactivation of the entire TLFZ. Following its Triassic origin due to the indentation collision, the subduction of the Paleo-Pacific Plate and the subduction and closure of the Mongol–Okhotsk Ocean were responsible for the multi-stage sinistral movements from the Late Jurassic to the Cretaceous. The evolution of the TLFZ demonstrates that a continental-scale strike-slip fault zone (&gt;1000 km long) forms through multiple stages of propagation and linkage in dynamic settings of plate convergence.</p>\",\"PeriodicalId\":7095,\"journal\":{\"name\":\"Acta Geologica Sinica ‐ English Edition\",\"volume\":\"99 2\",\"pages\":\"352-369\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1755-6724.15282\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geologica Sinica ‐ English Edition\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1755-6724.15282\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geologica Sinica ‐ English Edition","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1755-6724.15282","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

东亚的郯庐断裂带(TLFZ)长约3000公里,是世界上最长的大陆走滑断裂带,是这种断裂带如何在大陆尺度上形成和传播的例证。来自TLFZ及周边地区的构造和年代学资料表明,该断裂带起源于华北克拉通与扬子地块三叠纪压陷碰撞期间沿倾斜大陆辐合边缘的NE/ w向左旋韧性剪切带。三叠纪断裂带位于大别造山带和苏鲁造山带之间,全长约720 km,沿TLFZ表现出明显的左旋偏移约300 km。第二次左旋运动发生在晚侏罗世早期,使原有南段重新活化,向北扩展至现今渤海湾南岸,并形成了敦密断裂带的重要部分。早白垩世早期的第三期左旋运动是中生代最剧烈的走滑运动,导致了TLFZ的完全联动。这一阶段包括南中段的进一步北扩,敦化-密山断裂带的南扩和北扩,以及整个宜兰-伊通断裂带的形成。第四阶段,在晚白垩纪早期,涉及整个TLFZ的重新激活。晚侏罗世至白垩纪,古太平洋板块的俯冲和蒙古-鄂霍次克洋的俯冲和闭合导致了多期左旋运动。TLFZ的演化表明,在板块辐合的动态背景下,经过多阶段的传播和联动,形成了一个长达1000公里的大陆尺度走滑断裂带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiple Stages of Strike-slip Movement and the Propagation of the Tan–Lu Fault Zone, East Asia

Multiple Stages of Strike-slip Movement and the Propagation of the Tan–Lu Fault Zone, East Asia

The approximately 3000 km long Tan–Lu fault zone (TLFZ) in East Asia is the longest continental strike-slip fault zone in the world and exemplifies how such a fault zone forms and propagates on a continental scale. Structural and geochronological data from the TLFZ and surrounding regions indicate that the fault zone originated as NE/SW-striking sinistral ductile shear zones along an oblique continental convergence margin during the Triassic indentation collision between the North China Craton and the Yangtze Block. The Triassic fault zone, with a total length of about 720 km between the Dabie and Sulu orogens, exhibited an apparent sinistral offset of approximately 300 km along the TLFZ. The second stage of sinistral movement occurred in the earliest Late Jurassic, reactivating the pre-existing southern segment and propagating northwards to the southern coastline of present-day Bohai Bay, as well as forming a significant portion of the Dunhua–Mishan fault zone. The third stage of sinistral movement, in the earliest Early Cretaceous, was the most intense strike-slip movement of the Mesozoic, leading to the complete linkage of the TLFZ. This stage included further northward propagation of the southern–middle segment, both southward and northward propagation of the Dunhua–Mishan fault zone, as well as the formation of the entire Yilan–Yitong fault zone. The fourth stage, in the earliest Late Cretaceous, involved the reactivation of the entire TLFZ. Following its Triassic origin due to the indentation collision, the subduction of the Paleo-Pacific Plate and the subduction and closure of the Mongol–Okhotsk Ocean were responsible for the multi-stage sinistral movements from the Late Jurassic to the Cretaceous. The evolution of the TLFZ demonstrates that a continental-scale strike-slip fault zone (>1000 km long) forms through multiple stages of propagation and linkage in dynamic settings of plate convergence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Geologica Sinica ‐ English Edition
Acta Geologica Sinica ‐ English Edition 地学-地球科学综合
CiteScore
3.00
自引率
12.10%
发文量
3039
审稿时长
6 months
期刊介绍: Acta Geologica Sinica mainly reports the latest and most important achievements in the theoretical and basic research in geological sciences, together with new technologies, in China. Papers published involve various aspects of research concerning geosciences and related disciplines, such as stratigraphy, palaeontology, origin and history of the Earth, structural geology, tectonics, mineralogy, petrology, geochemistry, geophysics, geology of mineral deposits, hydrogeology, engineering geology, environmental geology, regional geology and new theories and technologies of geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信