Canan Durukan, Jannik Faierson, Isabel van der Wal, Juan Lizandra Pérez, Sven Hennig, Tom N. Grossmann
{"title":"螺旋依赖性酶促肽环化","authors":"Canan Durukan, Jannik Faierson, Isabel van der Wal, Juan Lizandra Pérez, Sven Hennig, Tom N. Grossmann","doi":"10.1002/psc.70024","DOIUrl":null,"url":null,"abstract":"<p>The secondary structure plays a crucial role in the biological activity of peptides. Various strategies have been developed to stabilize particular peptide conformations, including sequence modifications and macrocyclization approaches. Often, the interplay between conformational constraint and flexibility is central to bioactivity. Here, we investigate how peptide α-helicity influences enzymatic head-to-tail cyclization using an engineered Sortase. We show that peptides with low helicity readily undergo intramolecular cyclization, while more rigid, helical peptides exhibit complex cyclization behaviors including cyclic dimer formation. These findings reveal that increased peptide rigidity can redirect enzymatic reactions from intramolecular to intermolecular processes, and demonstrates how changes in molecular rigidity can guide chemical reactivity. These insights can advance the design of peptide-derived materials, hydrogels, and stimuli-responsive probes.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 6","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psc.70024","citationCount":"0","resultStr":"{\"title\":\"Helicity-Dependent Enzymatic Peptide Cyclization\",\"authors\":\"Canan Durukan, Jannik Faierson, Isabel van der Wal, Juan Lizandra Pérez, Sven Hennig, Tom N. Grossmann\",\"doi\":\"10.1002/psc.70024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The secondary structure plays a crucial role in the biological activity of peptides. Various strategies have been developed to stabilize particular peptide conformations, including sequence modifications and macrocyclization approaches. Often, the interplay between conformational constraint and flexibility is central to bioactivity. Here, we investigate how peptide α-helicity influences enzymatic head-to-tail cyclization using an engineered Sortase. We show that peptides with low helicity readily undergo intramolecular cyclization, while more rigid, helical peptides exhibit complex cyclization behaviors including cyclic dimer formation. These findings reveal that increased peptide rigidity can redirect enzymatic reactions from intramolecular to intermolecular processes, and demonstrates how changes in molecular rigidity can guide chemical reactivity. These insights can advance the design of peptide-derived materials, hydrogels, and stimuli-responsive probes.</p>\",\"PeriodicalId\":16946,\"journal\":{\"name\":\"Journal of Peptide Science\",\"volume\":\"31 6\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psc.70024\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Peptide Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/psc.70024\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.70024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The secondary structure plays a crucial role in the biological activity of peptides. Various strategies have been developed to stabilize particular peptide conformations, including sequence modifications and macrocyclization approaches. Often, the interplay between conformational constraint and flexibility is central to bioactivity. Here, we investigate how peptide α-helicity influences enzymatic head-to-tail cyclization using an engineered Sortase. We show that peptides with low helicity readily undergo intramolecular cyclization, while more rigid, helical peptides exhibit complex cyclization behaviors including cyclic dimer formation. These findings reveal that increased peptide rigidity can redirect enzymatic reactions from intramolecular to intermolecular processes, and demonstrates how changes in molecular rigidity can guide chemical reactivity. These insights can advance the design of peptide-derived materials, hydrogels, and stimuli-responsive probes.
期刊介绍:
The official Journal of the European Peptide Society EPS
The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews.
The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.