Vishal Srivastava, Akshaya Prabhu, Sravya Nedungatt, K. Vibha Damodara, Shyam Lal, Jyoti Kini
{"title":"基于组织病理图像的前列腺癌多类分类的高效并行分支网络","authors":"Vishal Srivastava, Akshaya Prabhu, Sravya Nedungatt, K. Vibha Damodara, Shyam Lal, Jyoti Kini","doi":"10.1002/ima.70092","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Prostate cancer is one of the prevalent forms of cancer, posing a significant health concern for men. Accurate detection and classification of prostate cancer are crucial for effective diagnosis and treatment planning. Histopathological images play a pivotal role in identifying prostate cancer by enabling pathologists to identify cellular abnormalities and tumor characteristics. With the rapid advancements in deep learning, Convolutional Neural Networks (CNNs) have emerged as a powerful tool for tackling complex computer vision tasks, including object detection, classification, and segmentation. This paper proposes a Parallel Branch Network (PBN), a CNN architecture specifically designed for the automatic classification of prostate cancer into its subtypes from histopathological images. The paper introduces a novel Efficient Residual (ER) block that enhances feature representation using residual learning and multi-scale feature extraction. By utilizing multiple branches with different filter reduction ratios and dense attention mechanisms, the block captures diverse features while preserving essential information. The proposed PBN model achieved a classification accuracy of 93.16% on the Prostate Gleason dataset, outperforming all other comparison models.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Parallel Branch Network for Multi-Class Classification of Prostate Cancer From Histopathological Images\",\"authors\":\"Vishal Srivastava, Akshaya Prabhu, Sravya Nedungatt, K. Vibha Damodara, Shyam Lal, Jyoti Kini\",\"doi\":\"10.1002/ima.70092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Prostate cancer is one of the prevalent forms of cancer, posing a significant health concern for men. Accurate detection and classification of prostate cancer are crucial for effective diagnosis and treatment planning. Histopathological images play a pivotal role in identifying prostate cancer by enabling pathologists to identify cellular abnormalities and tumor characteristics. With the rapid advancements in deep learning, Convolutional Neural Networks (CNNs) have emerged as a powerful tool for tackling complex computer vision tasks, including object detection, classification, and segmentation. This paper proposes a Parallel Branch Network (PBN), a CNN architecture specifically designed for the automatic classification of prostate cancer into its subtypes from histopathological images. The paper introduces a novel Efficient Residual (ER) block that enhances feature representation using residual learning and multi-scale feature extraction. By utilizing multiple branches with different filter reduction ratios and dense attention mechanisms, the block captures diverse features while preserving essential information. The proposed PBN model achieved a classification accuracy of 93.16% on the Prostate Gleason dataset, outperforming all other comparison models.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.70092\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70092","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Efficient Parallel Branch Network for Multi-Class Classification of Prostate Cancer From Histopathological Images
Prostate cancer is one of the prevalent forms of cancer, posing a significant health concern for men. Accurate detection and classification of prostate cancer are crucial for effective diagnosis and treatment planning. Histopathological images play a pivotal role in identifying prostate cancer by enabling pathologists to identify cellular abnormalities and tumor characteristics. With the rapid advancements in deep learning, Convolutional Neural Networks (CNNs) have emerged as a powerful tool for tackling complex computer vision tasks, including object detection, classification, and segmentation. This paper proposes a Parallel Branch Network (PBN), a CNN architecture specifically designed for the automatic classification of prostate cancer into its subtypes from histopathological images. The paper introduces a novel Efficient Residual (ER) block that enhances feature representation using residual learning and multi-scale feature extraction. By utilizing multiple branches with different filter reduction ratios and dense attention mechanisms, the block captures diverse features while preserving essential information. The proposed PBN model achieved a classification accuracy of 93.16% on the Prostate Gleason dataset, outperforming all other comparison models.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.