具有边界的紧致梯度爱因斯坦型流形

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Allan George de Carvalho Freitas, José Nazareno Vieira Gomes
{"title":"具有边界的紧致梯度爱因斯坦型流形","authors":"Allan George de Carvalho Freitas,&nbsp;José Nazareno Vieira Gomes","doi":"10.1007/s11005-025-01937-w","DOIUrl":null,"url":null,"abstract":"<div><p>We deal with rigidity results for compact gradient Einstein-type manifolds with nonempty boundary. As a result, we obtain new characterizations for hemispheres and geodesic balls in simply connected space forms. In dimensions three and five, we obtain topological characterizations for the boundary and upper bounds for its area.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact gradient Einstein-type manifolds with boundary\",\"authors\":\"Allan George de Carvalho Freitas,&nbsp;José Nazareno Vieira Gomes\",\"doi\":\"10.1007/s11005-025-01937-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We deal with rigidity results for compact gradient Einstein-type manifolds with nonempty boundary. As a result, we obtain new characterizations for hemispheres and geodesic balls in simply connected space forms. In dimensions three and five, we obtain topological characterizations for the boundary and upper bounds for its area.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01937-w\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01937-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有非空边界的紧致梯度爱因斯坦型流形的刚性结果。结果,我们得到了单连通空间形式下半球和测地线球的新表征。在第三维和第五维,我们得到了其区域边界和上界的拓扑特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compact gradient Einstein-type manifolds with boundary

We deal with rigidity results for compact gradient Einstein-type manifolds with nonempty boundary. As a result, we obtain new characterizations for hemispheres and geodesic balls in simply connected space forms. In dimensions three and five, we obtain topological characterizations for the boundary and upper bounds for its area.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信