\(\mathbb {F}_{q^{2}} \times (\mathbb {F}_{q^{2}}+v\mathbb {F}_{q^{2}})\)上的恒环码及其在构造新量子码中的应用

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Liqi Wang, Xinxin Zhang, Shixin Zhu
{"title":"\\(\\mathbb {F}_{q^{2}} \\times (\\mathbb {F}_{q^{2}}+v\\mathbb {F}_{q^{2}})\\)上的恒环码及其在构造新量子码中的应用","authors":"Liqi Wang,&nbsp;Xinxin Zhang,&nbsp;Shixin Zhu","doi":"10.1007/s11128-025-04737-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathbb {F}_{q^{2}}\\mathcal {R}=\\mathbb {F}_{q^{2}} \\times (\\mathbb {F}_{q^{2}}+v\\mathbb {F}_{q^{2}})\\)</span>, where <i>q</i> is an odd prime power and <span>\\(v^{2}=v\\)</span>. In this paper, we discuss the properties of linear codes and <i>u</i>-constacyclic codes over <span>\\(\\mathbb {F}_{q^{2}}\\mathcal {R}\\)</span>, where <span>\\(u=(u_1,u_2)\\)</span>, <span>\\(u_1\\in \\mathbb {F}_{q^2}^*\\)</span>, <span>\\(u_2=\\varepsilon (1-2v)\\)</span>, and <span>\\(\\varepsilon \\in \\mathbb {F}_{q^2}^*\\)</span>. Besides, a Gray map from <span>\\(\\mathbb {F}_{q^{2}}^{m}\\times \\mathcal {R}^{n}\\)</span> to <span>\\(\\mathbb {F}_{q^{2}}^{m+2n}\\)</span> is defined, and the Gray images of linear codes and the separable <span>\\(\\mathbb {F}_{q^{2}}\\mathcal {R}\\)</span>-<i>u</i>-constacyclic codes are studied. According to the Gray images of the separable <span>\\(\\mathbb {F}_{q^{2}}\\mathcal {R}\\)</span>-<i>u</i>-constacyclic codes, some new quantum codes are obtained. Compared with the known ones, our codes have better parameters.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constacyclic codes over \\\\(\\\\mathbb {F}_{q^{2}} \\\\times (\\\\mathbb {F}_{q^{2}}+v\\\\mathbb {F}_{q^{2}})\\\\) and their applications in constructing new quantum codes\",\"authors\":\"Liqi Wang,&nbsp;Xinxin Zhang,&nbsp;Shixin Zhu\",\"doi\":\"10.1007/s11128-025-04737-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mathbb {F}_{q^{2}}\\\\mathcal {R}=\\\\mathbb {F}_{q^{2}} \\\\times (\\\\mathbb {F}_{q^{2}}+v\\\\mathbb {F}_{q^{2}})\\\\)</span>, where <i>q</i> is an odd prime power and <span>\\\\(v^{2}=v\\\\)</span>. In this paper, we discuss the properties of linear codes and <i>u</i>-constacyclic codes over <span>\\\\(\\\\mathbb {F}_{q^{2}}\\\\mathcal {R}\\\\)</span>, where <span>\\\\(u=(u_1,u_2)\\\\)</span>, <span>\\\\(u_1\\\\in \\\\mathbb {F}_{q^2}^*\\\\)</span>, <span>\\\\(u_2=\\\\varepsilon (1-2v)\\\\)</span>, and <span>\\\\(\\\\varepsilon \\\\in \\\\mathbb {F}_{q^2}^*\\\\)</span>. Besides, a Gray map from <span>\\\\(\\\\mathbb {F}_{q^{2}}^{m}\\\\times \\\\mathcal {R}^{n}\\\\)</span> to <span>\\\\(\\\\mathbb {F}_{q^{2}}^{m+2n}\\\\)</span> is defined, and the Gray images of linear codes and the separable <span>\\\\(\\\\mathbb {F}_{q^{2}}\\\\mathcal {R}\\\\)</span>-<i>u</i>-constacyclic codes are studied. According to the Gray images of the separable <span>\\\\(\\\\mathbb {F}_{q^{2}}\\\\mathcal {R}\\\\)</span>-<i>u</i>-constacyclic codes, some new quantum codes are obtained. Compared with the known ones, our codes have better parameters.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"24 5\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-025-04737-2\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04737-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

设\(\mathbb {F}_{q^{2}}\mathcal {R}=\mathbb {F}_{q^{2}} \times (\mathbb {F}_{q^{2}}+v\mathbb {F}_{q^{2}})\),其中q是奇质数幂,\(v^{2}=v\)。本文讨论了\(\mathbb {F}_{q^{2}}\mathcal {R}\)上的线性码和u-常环码的性质,其中\(u=(u_1,u_2)\), \(u_1\in \mathbb {F}_{q^2}^*\), \(u_2=\varepsilon (1-2v)\)和\(\varepsilon \in \mathbb {F}_{q^2}^*\)。定义了从\(\mathbb {F}_{q^{2}}^{m}\times \mathcal {R}^{n}\)到\(\mathbb {F}_{q^{2}}^{m+2n}\)的灰度映射,研究了线性码和可分离的\(\mathbb {F}_{q^{2}}\mathcal {R}\) -u-恒环码的灰度图像。根据可分离的\(\mathbb {F}_{q^{2}}\mathcal {R}\) -u-常环码的灰度图像,得到了一些新的量子码。与已知代码相比,我们的代码具有更好的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constacyclic codes over \(\mathbb {F}_{q^{2}} \times (\mathbb {F}_{q^{2}}+v\mathbb {F}_{q^{2}})\) and their applications in constructing new quantum codes

Let \(\mathbb {F}_{q^{2}}\mathcal {R}=\mathbb {F}_{q^{2}} \times (\mathbb {F}_{q^{2}}+v\mathbb {F}_{q^{2}})\), where q is an odd prime power and \(v^{2}=v\). In this paper, we discuss the properties of linear codes and u-constacyclic codes over \(\mathbb {F}_{q^{2}}\mathcal {R}\), where \(u=(u_1,u_2)\), \(u_1\in \mathbb {F}_{q^2}^*\), \(u_2=\varepsilon (1-2v)\), and \(\varepsilon \in \mathbb {F}_{q^2}^*\). Besides, a Gray map from \(\mathbb {F}_{q^{2}}^{m}\times \mathcal {R}^{n}\) to \(\mathbb {F}_{q^{2}}^{m+2n}\) is defined, and the Gray images of linear codes and the separable \(\mathbb {F}_{q^{2}}\mathcal {R}\)-u-constacyclic codes are studied. According to the Gray images of the separable \(\mathbb {F}_{q^{2}}\mathcal {R}\)-u-constacyclic codes, some new quantum codes are obtained. Compared with the known ones, our codes have better parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信