红外小目标检测的动态注意力转换网络

Chen Hu;Yian Huang;Kexuan Li;Luping Zhang;Chang Long;Yiming Zhu;Tian Pu;Zhenming Peng
{"title":"红外小目标检测的动态注意力转换网络","authors":"Chen Hu;Yian Huang;Kexuan Li;Luping Zhang;Chang Long;Yiming Zhu;Tian Pu;Zhenming Peng","doi":"10.1109/LGRS.2025.3557021","DOIUrl":null,"url":null,"abstract":"Infrared small target detection (ISTD) is widely used in civilian and military applications. However, ISTD encounters several challenges, including the tendency for small and dim targets to be obscured by complex backgrounds. To address this issue, we propose the dynamic attention transformer network (DATransNet), which aims to extract and preserve detailed information vital for small targets. DATransNet employs the dynamic attention transformer (DATrans), simulating central difference convolutions (CDCs) to extract gradient features. Furthermore, we propose a global feature extraction module (GFEM) that offers a comprehensive perspective to prevent the network from focusing solely on details while neglecting the global information. We compare the network with state-of-the-art (SOTA) approaches and demonstrate that our method performs effectively. Our source code is available at <uri>https://github.com/greekinRoma/DATransNet</uri>","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DATransNet: Dynamic Attention Transformer Network for Infrared Small Target Detection\",\"authors\":\"Chen Hu;Yian Huang;Kexuan Li;Luping Zhang;Chang Long;Yiming Zhu;Tian Pu;Zhenming Peng\",\"doi\":\"10.1109/LGRS.2025.3557021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infrared small target detection (ISTD) is widely used in civilian and military applications. However, ISTD encounters several challenges, including the tendency for small and dim targets to be obscured by complex backgrounds. To address this issue, we propose the dynamic attention transformer network (DATransNet), which aims to extract and preserve detailed information vital for small targets. DATransNet employs the dynamic attention transformer (DATrans), simulating central difference convolutions (CDCs) to extract gradient features. Furthermore, we propose a global feature extraction module (GFEM) that offers a comprehensive perspective to prevent the network from focusing solely on details while neglecting the global information. We compare the network with state-of-the-art (SOTA) approaches and demonstrate that our method performs effectively. Our source code is available at <uri>https://github.com/greekinRoma/DATransNet</uri>\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10947728/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10947728/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

红外小目标探测(ISTD)在民用和军事领域有着广泛的应用。然而,ISTD遇到了一些挑战,包括小而暗淡的目标倾向于被复杂的背景所掩盖。为了解决这个问题,我们提出了动态注意力转换网络(DATransNet),旨在提取和保存小目标的重要细节信息。DATransNet采用动态注意力转换器(DATrans),模拟中心差分卷积(cdc)提取梯度特征。此外,我们提出了一个全局特征提取模块(GFEM),该模块提供了一个全面的视角,以防止网络只关注细节而忽略全局信息。我们将网络与最先进的(SOTA)方法进行比较,并证明我们的方法有效地执行。我们的源代码可从https://github.com/greekinRoma/DATransNet获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DATransNet: Dynamic Attention Transformer Network for Infrared Small Target Detection
Infrared small target detection (ISTD) is widely used in civilian and military applications. However, ISTD encounters several challenges, including the tendency for small and dim targets to be obscured by complex backgrounds. To address this issue, we propose the dynamic attention transformer network (DATransNet), which aims to extract and preserve detailed information vital for small targets. DATransNet employs the dynamic attention transformer (DATrans), simulating central difference convolutions (CDCs) to extract gradient features. Furthermore, we propose a global feature extraction module (GFEM) that offers a comprehensive perspective to prevent the network from focusing solely on details while neglecting the global information. We compare the network with state-of-the-art (SOTA) approaches and demonstrate that our method performs effectively. Our source code is available at https://github.com/greekinRoma/DATransNet
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信