{"title":"城市整体和完全地表温度差异的影响因素探讨","authors":"Jiashuo Li;Xiujuan Dai;Dandan Wang;Yunhao Chen;Zhenyuan Zhu","doi":"10.1109/LGRS.2025.3559323","DOIUrl":null,"url":null,"abstract":"Complete urban surface temperature (UST) (<inline-formula> <tex-math>$T_{\\textrm {c}}$ </tex-math></inline-formula>) takes into account the total active surface areas and is used to estimate the surface temperature over a 3-D rough surface such as cities. Direct calculations of <inline-formula> <tex-math>$T_{\\textrm {c}}$ </tex-math></inline-formula> require temperatures of each surface of the urban canopy, which are hard to obtain in actual remote sensing observations. Moreover, solid-angle integral temperature (<inline-formula> <tex-math>$T_{\\text {SI}}$ </tex-math></inline-formula>) calculated using multiangle remote sensing observations has great potential for approaching <inline-formula> <tex-math>$T_{\\textrm {c}}$ </tex-math></inline-formula>. However, due to varying mechanisms, some differences remain between them. This study uses temperatures of urban facets in 3-D (TUF-3D) and surface-sensor-sun urban model (SUM) models to compute integral temperatures for multiple view angles over various urban forms and investigates the differences between <inline-formula> <tex-math>$T_{\\textrm {c}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$T_{\\text {SI}}$ </tex-math></inline-formula> and the influencing factors. The difference is minimized at VZA <inline-formula> <tex-math>$=48^{\\circ }$ </tex-math></inline-formula>–70° and VAA <inline-formula> <tex-math>$=0^{\\circ }$ </tex-math></inline-formula>–360°, and the mean absolute error (MAE) is 0.67 K. Urban canopy geometry (UCG) and solar zenith angles (SZAs) are the important influencing factors. Compared with <inline-formula> <tex-math>$T_{\\textrm {c}}$ </tex-math></inline-formula>, <inline-formula> <tex-math>$T_{\\text {SI}}$ </tex-math></inline-formula> underestimates the proportion of the wall. The MAE between <inline-formula> <tex-math>$T_{\\text {SI}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$T_{\\textrm {c}}$ </tex-math></inline-formula> decreases as the wall fraction in the integral domain increases but increases when the wall fraction exceeds a threshold. The upper limit of the optimal integral domain (OID) is basically 70° and the lower limit hovers around 48°, moving away from and then approaching the zenith as the SZA increases. This study evaluates the influencing factors for differences in <inline-formula> <tex-math>$T_{\\text {SI}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$T_{\\textrm {c}}$ </tex-math></inline-formula>. It offers a simple and high-accuracy method for approaching <inline-formula> <tex-math>$T_{\\textrm {c}}$ </tex-math></inline-formula> which can be used to facilitate research in urban energy balance and urban climate.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Influencing Factors for Differences in Integral and Complete Urban Surface Temperatures\",\"authors\":\"Jiashuo Li;Xiujuan Dai;Dandan Wang;Yunhao Chen;Zhenyuan Zhu\",\"doi\":\"10.1109/LGRS.2025.3559323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complete urban surface temperature (UST) (<inline-formula> <tex-math>$T_{\\\\textrm {c}}$ </tex-math></inline-formula>) takes into account the total active surface areas and is used to estimate the surface temperature over a 3-D rough surface such as cities. Direct calculations of <inline-formula> <tex-math>$T_{\\\\textrm {c}}$ </tex-math></inline-formula> require temperatures of each surface of the urban canopy, which are hard to obtain in actual remote sensing observations. Moreover, solid-angle integral temperature (<inline-formula> <tex-math>$T_{\\\\text {SI}}$ </tex-math></inline-formula>) calculated using multiangle remote sensing observations has great potential for approaching <inline-formula> <tex-math>$T_{\\\\textrm {c}}$ </tex-math></inline-formula>. However, due to varying mechanisms, some differences remain between them. This study uses temperatures of urban facets in 3-D (TUF-3D) and surface-sensor-sun urban model (SUM) models to compute integral temperatures for multiple view angles over various urban forms and investigates the differences between <inline-formula> <tex-math>$T_{\\\\textrm {c}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$T_{\\\\text {SI}}$ </tex-math></inline-formula> and the influencing factors. The difference is minimized at VZA <inline-formula> <tex-math>$=48^{\\\\circ }$ </tex-math></inline-formula>–70° and VAA <inline-formula> <tex-math>$=0^{\\\\circ }$ </tex-math></inline-formula>–360°, and the mean absolute error (MAE) is 0.67 K. Urban canopy geometry (UCG) and solar zenith angles (SZAs) are the important influencing factors. Compared with <inline-formula> <tex-math>$T_{\\\\textrm {c}}$ </tex-math></inline-formula>, <inline-formula> <tex-math>$T_{\\\\text {SI}}$ </tex-math></inline-formula> underestimates the proportion of the wall. The MAE between <inline-formula> <tex-math>$T_{\\\\text {SI}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$T_{\\\\textrm {c}}$ </tex-math></inline-formula> decreases as the wall fraction in the integral domain increases but increases when the wall fraction exceeds a threshold. The upper limit of the optimal integral domain (OID) is basically 70° and the lower limit hovers around 48°, moving away from and then approaching the zenith as the SZA increases. This study evaluates the influencing factors for differences in <inline-formula> <tex-math>$T_{\\\\text {SI}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$T_{\\\\textrm {c}}$ </tex-math></inline-formula>. It offers a simple and high-accuracy method for approaching <inline-formula> <tex-math>$T_{\\\\textrm {c}}$ </tex-math></inline-formula> which can be used to facilitate research in urban energy balance and urban climate.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10960414/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10960414/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring Influencing Factors for Differences in Integral and Complete Urban Surface Temperatures
Complete urban surface temperature (UST) ($T_{\textrm {c}}$ ) takes into account the total active surface areas and is used to estimate the surface temperature over a 3-D rough surface such as cities. Direct calculations of $T_{\textrm {c}}$ require temperatures of each surface of the urban canopy, which are hard to obtain in actual remote sensing observations. Moreover, solid-angle integral temperature ($T_{\text {SI}}$ ) calculated using multiangle remote sensing observations has great potential for approaching $T_{\textrm {c}}$ . However, due to varying mechanisms, some differences remain between them. This study uses temperatures of urban facets in 3-D (TUF-3D) and surface-sensor-sun urban model (SUM) models to compute integral temperatures for multiple view angles over various urban forms and investigates the differences between $T_{\textrm {c}}$ and $T_{\text {SI}}$ and the influencing factors. The difference is minimized at VZA $=48^{\circ }$ –70° and VAA $=0^{\circ }$ –360°, and the mean absolute error (MAE) is 0.67 K. Urban canopy geometry (UCG) and solar zenith angles (SZAs) are the important influencing factors. Compared with $T_{\textrm {c}}$ , $T_{\text {SI}}$ underestimates the proportion of the wall. The MAE between $T_{\text {SI}}$ and $T_{\textrm {c}}$ decreases as the wall fraction in the integral domain increases but increases when the wall fraction exceeds a threshold. The upper limit of the optimal integral domain (OID) is basically 70° and the lower limit hovers around 48°, moving away from and then approaching the zenith as the SZA increases. This study evaluates the influencing factors for differences in $T_{\text {SI}}$ and $T_{\textrm {c}}$ . It offers a simple and high-accuracy method for approaching $T_{\textrm {c}}$ which can be used to facilitate research in urban energy balance and urban climate.