Katrin Halbig , Alexander Hoen , Ambros Gleixner , Jakob Witzig , Dieter Weninger
{"title":"具有无界半连续变量的混合整数问题的潜水启发式","authors":"Katrin Halbig , Alexander Hoen , Ambros Gleixner , Jakob Witzig , Dieter Weninger","doi":"10.1016/j.ejco.2025.100107","DOIUrl":null,"url":null,"abstract":"<div><div>Semi-continuous decision variables arise naturally in many real-world applications. They are defined to take either value zero or any value within a specified range, and occur mainly to prevent small nonzero values in the solution. One particular challenge that can come with semi-continuous variables in practical models is that their upper bound may be large or even infinite. In this article, we briefly discuss these challenges, and present a new diving heuristic tailored for mixed-integer optimization problems with general semi-continuous variables. The heuristic is designed to work independently of whether the semi-continuous variables are bounded from above, and thus circumvents the specific difficulties that come with unbounded semi-continuous variables. We conduct extensive computational experiments on three different test sets, integrating the heuristic in an open-source MIP solver. The results indicate that this heuristic is a successful tool for finding high-quality solutions in negligible time. At the root node the primal gap is reduced by an average of 5% up to 21%, and considering the overall performance improvement, the primal integral is reduced by 2% to 17% on average.</div></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"13 ","pages":"Article 100107"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A diving heuristic for mixed-integer problems with unbounded semi-continuous variables\",\"authors\":\"Katrin Halbig , Alexander Hoen , Ambros Gleixner , Jakob Witzig , Dieter Weninger\",\"doi\":\"10.1016/j.ejco.2025.100107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Semi-continuous decision variables arise naturally in many real-world applications. They are defined to take either value zero or any value within a specified range, and occur mainly to prevent small nonzero values in the solution. One particular challenge that can come with semi-continuous variables in practical models is that their upper bound may be large or even infinite. In this article, we briefly discuss these challenges, and present a new diving heuristic tailored for mixed-integer optimization problems with general semi-continuous variables. The heuristic is designed to work independently of whether the semi-continuous variables are bounded from above, and thus circumvents the specific difficulties that come with unbounded semi-continuous variables. We conduct extensive computational experiments on three different test sets, integrating the heuristic in an open-source MIP solver. The results indicate that this heuristic is a successful tool for finding high-quality solutions in negligible time. At the root node the primal gap is reduced by an average of 5% up to 21%, and considering the overall performance improvement, the primal integral is reduced by 2% to 17% on average.</div></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"13 \",\"pages\":\"Article 100107\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192440625000048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440625000048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
A diving heuristic for mixed-integer problems with unbounded semi-continuous variables
Semi-continuous decision variables arise naturally in many real-world applications. They are defined to take either value zero or any value within a specified range, and occur mainly to prevent small nonzero values in the solution. One particular challenge that can come with semi-continuous variables in practical models is that their upper bound may be large or even infinite. In this article, we briefly discuss these challenges, and present a new diving heuristic tailored for mixed-integer optimization problems with general semi-continuous variables. The heuristic is designed to work independently of whether the semi-continuous variables are bounded from above, and thus circumvents the specific difficulties that come with unbounded semi-continuous variables. We conduct extensive computational experiments on three different test sets, integrating the heuristic in an open-source MIP solver. The results indicate that this heuristic is a successful tool for finding high-quality solutions in negligible time. At the root node the primal gap is reduced by an average of 5% up to 21%, and considering the overall performance improvement, the primal integral is reduced by 2% to 17% on average.
期刊介绍:
The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.